Lời giải:
Áp dụng BĐT AM-GM:
\(a^3+b^3+b^3\geq 3ab^2\)
\(a^3+a^3+b^3\geq 3a^2b\)
\(\Rightarrow 3(a^3+b^3)\geq 3ab(a+b)\)
\(\Leftrightarrow 4(a^3+b^3)\geq a^3+b^3+3ab(a+b)=(a+b)^3\)
Tương tự:
\(\left\{\begin{matrix} 4(b^3+c^3)\geq (b+c)^3\\ 4(c^3+a^3)\geq (c+a)^3\end{matrix}\right.\)
Cộng theo vế:
\(8(a^3+b^3+c^3)\geq (a+b)^3+(b+c)^3+(c+a)^3\)
Do đó ta có đpcm
Dấu bằng xảy ra khi a=b=c