a ) \(VT=\left(a^2-1\right)^2+4a^2\)
\(=a^4-2a^2+1+4a^2\)
\(=a^4+2a^2+1\)
\(=\left(a^2+1\right)^2=VP\left(đpcm\right)\)
b ) \(VT=\left(x-y\right)^2+\left(x+y\right)^2+2\left(x^2-y^2\right)\)
\(=\left(x-y\right)^2+\left(x+y\right)^2+2\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y+x+y\right)^2\)
\(=\left(2x\right)^2=4x^2=VP\left(đpcm\right)\)
a, Ta có:
\(VT=\left(a^2-1\right)^2+4a^2=a^4-2a^2+1+4a^2=a^4+2a^2+1=\left(a^2+1\right)^2=VP\)
\(\Rightarrow dpcm\)
b, Ta có:
\(VT=\left(x-y\right)^2+\left(x+y\right)^2+2\left(x^2-y^2\right)\)
\(=x^2-2xy+y^2+x^2+2xy+y^2+2x^2-2y^2=4x^2=VP\)
\(\Rightarrow dpcm\)