Bài 1. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC TỪ 0 ĐẾN 180 ĐỘ

HC

chứng minh biểu thức ko phụ thuộc vào x

A= \(\sqrt{\sin^4x+4\cos^2x}+\sqrt{\cos^4x+4\sin^2x}\)

B= \(3\left(\sin^8x-\cos^8x\right)+4\left(\cos^6x-2\sin^6x\right)+6\sin^4x\)

NL
30 tháng 10 2019 lúc 17:23

\(A=\sqrt{\left(1-cos^2x\right)^2+4cos^2x}+\sqrt{\left(1-sin^2x\right)^2+4sin^2x}\)

\(=\sqrt{cos^4x+2cos^2x+1}+\sqrt{sin^4x+2sin^2x+1}\)

\(=\sqrt{\left(cos^2x+1\right)^2}+\sqrt{\left(sin^2x+1\right)^2}\)

\(=sin^2x+cos^2x+2=3\)

b/

\(3\left(sin^8x-cos^8x\right)=3\left(sin^4x+cos^4x\right)\left(sin^4x-cos^4x\right)\)

\(=3\left(sin^4x+cos^4x\right)\left(sin^2x-cos^2x\right)\)

\(=3sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x-3cos^6x\)

\(\Rightarrow B=-5sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x+cos^6x+6sin^4x\)

\(=-5sin^6x-3sin^4x\left(1-sin^2x\right)+3cos^4x\left(1-cos^2x\right)+cos^6x+6sin^4x\)

\(=-2sin^6x-2cos^6x+3sin^4x+3cos^4x\)

\(=-2\left(1-3sin^2x.cos^2x\right)+3\left(1-2sin^2x.cos^2x\right)\)

\(=-2+3=1\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TH
Xem chi tiết
NL
Xem chi tiết
TG
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
PV
Xem chi tiết
TH
Xem chi tiết
NB
Xem chi tiết
AH
Xem chi tiết