Bài 1. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC TỪ 0 ĐẾN 180 ĐỘ

TG

Biết sin x + cos x = m. Tìm \(\left|\sin^4x-\cos^4x\right|\) . Chứng minh rằng \(\left|m\right|\le\sqrt{2}\)

PN
18 tháng 11 2019 lúc 13:44

\(A=\left|\sin^4x-\cos^4x\right|=\left|\left(\sin^2x\right)^2-\left(\cos^2x\right)^2\right|\)

\(A=\left|\left(1-\cos^2x\right)^2-\left(\cos^2x\right)^2\right|=\left|1-2\cos^2x+\cos^4x-\cos^4x\right|\)

\(=\left|1-2\cos^2x\right|=\left|\sin^2x-\cos^2x\right|=\left|\left(\sin x-\cos x\right)\left(\sin x+\cos x\right)\right|\)

\(\sin x+\cos x=m\Rightarrow\cos x=m-\sin x\Rightarrow\sin x-\cos x=\sin x-m+\sin x=2\sin x-m\)

\(\sin x+\cos x=m\Rightarrow\sin^2x+\cos^2x+2\sin x.\cos x=m^2\)

\(\Leftrightarrow2\sin x.\cos x=m^2-1\)

\(\left(\sin x-\cos x\right)^2=\sin^2x+\cos^2x-2\sin x.\cos x=1-2.\left(m^2-1\right)=1-2m^2+2=3-2m^2\)

\(\Rightarrow\sin x-\cos x=\sqrt{\left(\sin x-\cos x\right)^2}=\sqrt{3-2m^2}\)

\(A=\left|m\sqrt{3-2m^2}\right|=\left|m\right|.\left|\sqrt{3-2m^2}\right|\)

P/s: lm đc mỗi đến đây thui à, cái CM kia chịu nhoa :)

Bình luận (1)
 Khách vãng lai đã xóa
NL
20 tháng 11 2019 lúc 18:20

\(\left(sinx+cosx\right)^2=m^2\Rightarrow1+2sinx.cosx=m^2\)\(\Rightarrow2sinx.cosx=m^2-1\)

\(\Rightarrow\left(sinx-cosx\right)^2=\left(sinx+cosx\right)^2-4sinx.cosx=m^2-2\left(m^2-1\right)=2-m^2\)

\(\left(sinx-cosx\right)^2\ge0\) \(\forall x\Rightarrow2-m^2\ge0\Rightarrow m^2\le2\Rightarrow\left|m\right|\le\sqrt{2}\)

Ta lại có \(\left(sinx-cosx\right)^2=2-m^2\Rightarrow\left|sinx-cosx\right|=\sqrt{2-m^2}\)

\(A=\left|sin^4x-cos^4x\right|=\left|\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\right|\)

\(=\left|\left(sinx-cosx\right)\left(sinx+cosx\right)\right|\)

\(=\left|m\sqrt{2-m^2}\right|=\left|m\right|\sqrt{2-m^2}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HC
Xem chi tiết
TH
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
AT
Xem chi tiết
HH
Xem chi tiết
TH
Xem chi tiết