Ôn tập chương 1

NT

Cho x,y,z,t thỏa mãn

\(\dfrac{x}{y+z+t}=\dfrac{y}{x+t+z}=\dfrac{z}{t+y+x}\)

Tính P=\(\dfrac{x+y}{z+t}+\dfrac{y+z}{x+t}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\)

Đề bài chính xác nhé

MS
18 tháng 11 2017 lúc 13:43

\(\dfrac{x}{y+z+t}=\dfrac{y}{x+t+z}=\dfrac{z}{t+y+x}\)

\(\Rightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{x+t+z}+1=\dfrac{z}{t+y+x}+1\)

\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{x+t+z}=\dfrac{x+y+z+t}{t+y+x}\)

\(\Rightarrow\left[{}\begin{matrix}x=y=z=t\\x+y+z+t=0\end{matrix}\right.\)

\(\circledast\) Khi \(x=y=z=t\) thì

\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{x+t}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}=1+1+1+1=4\)

\(\circledast\) Khi \(x+y+z+t=0\) thì:\(\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{matrix}\right.\)

\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{x+t}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Bình luận (0)

Các câu hỏi tương tự
FH
Xem chi tiết
BP
Xem chi tiết
TN
Xem chi tiết
NH
Xem chi tiết
DH
Xem chi tiết
FH
Xem chi tiết
CL
Xem chi tiết
TA
Xem chi tiết
LD
Xem chi tiết