Bài 5: Trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc (g.c.g)

SK

Cho tam giác ABC. Trên cạnh AB lấy các điểm D và E sao cho AD = BE. Qua D và E, vẽ các đường thẳng song song với BC, chúng cắt AC theo thứ tự ở M và N. Chứng minh rằng DM + EN = BC

Hướng dẫn : Qua N, kẻ đường thẳng song song với AB

NH
7 tháng 7 2017 lúc 10:57

Trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc (g.c.g)

Trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc (g.c.g)

Bình luận (0)
TH
28 tháng 12 2017 lúc 17:19

Từ N kẻ đường thẳng song song với AB cắt BC tại K. Nối EK.

Xét ∆BEK và ∆NKE, ta có:

ˆEKB=ˆKENEKB^=KEN^ (so le trong vì EN // BC)

EK cạnh chung

ˆBEK=ˆNKEBEK^=NKE^ (so le trong vì NK // AB)

Suy ra: ∆BEK = ∆NKE (g.c.g)

Suy ra: BE = NK (hai cạnh tương ứng)

EN = BK (hai cạnh tương ứng)

Xét ∆ADM và ∆NKC, ta có:

ˆA=ˆKNCA^=KNC^ (đồng vị vì NK // AB)

AD = NK (vì cùng bằng BE)

ˆADM=ˆNKCADM^=NKC^ (vì cùng bằng ˆBB^)

Suy ra: ∆ADM = ∆NKC (c.g.c)

=>DM = KC (hai cạnh tương ứng)

Mà BC = BK + KC. Suy ra: BC = EN + DM

Bình luận (2)

Các câu hỏi tương tự
MN
Xem chi tiết
NN
Xem chi tiết
SK
Xem chi tiết
LD
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
TM
Xem chi tiết
XL
Xem chi tiết