Bài 5: Trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc (g.c.g)

NN
Cho tam giác ABC, D là trung điểm của AB. Qua D kẻ đường thẳng song song với BC cắt AC tại E. Qua E kẻ đường thẳng song song với AB cắt BC tại F. a, Chứng minh tam giác BDF = tam giác EFD b, chứng minh DE bằng FC
TV
19 tháng 12 2020 lúc 21:07

Cứng đờ tay luôn rồi, khổ quá:((

a) Xét \(\Delta DBF\) và \(\Delta FED:\)

DF:cạnh chung

\(\widehat{BDF}=\widehat{EFD}\)(AB//EF)

\(\widehat{BFD}=\widehat{EDF}\)(DE//BC)

=> \(\Delta BDF=\Delta EFD\left(g-c-g\right)\)

b) (Ở lớp 8 thì sé có cái đường trung bình ý bạn, nó sẽ có tính chất luôn, nhưng lớp 7 chưa học đành làm theo lớp 7 vậy)

Ta có: \(\widehat{DAE}+\widehat{AED}+\widehat{EDA}=180^o\) (Tổng 3 góc trong 1 tam giác)

Lại có: \(\widehat{AED}+\widehat{DEF}+\widehat{FEC}=180^o\)  

Mà \(\widehat{DEF}=\widehat{EDA}\)(AB//EF)

=>\(\widehat{DAE}=\widehat{FEC}\)

Xét \(\Delta DAE\) và \(\Delta FEC:\)

DA=FE(=BD)

\(\widehat{DAE}=\widehat{EFC}\left(=\widehat{DBF}\right)\)

\(\widehat{DAE}=\widehat{FEC}\) (cmt)

=>\(\Delta DAE=\Delta FEC\left(g-c-g\right)\)

=> DE=FC(2 cạnh t/ứ)

=> Đpcm

 

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
TM
Xem chi tiết
ND
Xem chi tiết
TA
Xem chi tiết
XL
Xem chi tiết
LD
Xem chi tiết
H24
Xem chi tiết