Bài 9: Hình chữ nhật

LH

Cho tam giác ABC có đường cao AH. Gọi I là trung điểm AC, trên tia đối của IH lấy điểm E sao cho IE = IH. Gọi M, N lần lượt là trung điểm của HC, CE. Các đường thẳng AM, AN cắt HE tại G và K.

a) Cm tứ giác AHCE là hình chữ nhật.

b) Cm HG= GK= KE.

giup mikk voiii

 

NT
21 tháng 11 2023 lúc 14:34

a: Xét tứ giác AHCE có

I là trung điểm chung của AC và HE

=>AHCE là hình bình hành

Hình bình hành AHCE có \(\widehat{AHC}=90^0\)

nên AHCE là hình chữ nhật

b: Xét ΔAHC có

HI,AM là đường trung tuyến

HI cắt AM tại G

Do đó: G là trọng tâm của ΔAHC

=>\(HG=\dfrac{2}{3}HI=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot HE=\dfrac{1}{3}HE\)

Xét ΔEAC có

AN,EI là đường trung tuyến

AN cắt EI tại K

Do đó: K là trọng tâm của ΔEAC

=>\(EK=\dfrac{2}{3}EI=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot EH=\dfrac{1}{3}EH\)

HG+GK+KE=HE

=>\(GK+\dfrac{1}{3}HE+\dfrac{1}{3}HE=HE\)

=>\(GK=HE\left(1-\dfrac{1}{3}-\dfrac{1}{3}\right)=\dfrac{1}{3}HE\)

=>HG=GK=KE

Bình luận (0)

Các câu hỏi tương tự
TA
Xem chi tiết
2M
Xem chi tiết
NA
Xem chi tiết
DD
Xem chi tiết
LK
Xem chi tiết
SK
Xem chi tiết
TL
Xem chi tiết
PA
Xem chi tiết
LH
Xem chi tiết