Bài 9: Hình chữ nhật

LK

Cho tam giác ABC cân tại A đường cao AM gọi i là trung điểm ac, k là điểm đối xứng m qua i A. Chứng minh rằng tứ giác AMCK là hình chữ nhật B. Biết Ab=cm,BC=6cm tính diện tích tứ giác AKCM C. Từ i kẻ iH vuông góc AM Thuộc AM, chứng minh 3 điểm B,H,K thẳng hàng

NA
21 tháng 12 2021 lúc 16:29

a)Xét tứ giác AMCK ta có: IM=IK( vì M đối xứng với K qua I); IA=IC(vì I là trung điểm của AC).

Do đó: tứ giác AMCK là hình bình hành.

Mà ∠AMC=90 độ(vì AMlà đường trung tuyến của ΔABC cân tại A  nên đồng thời là đường cao, hay AM⊥BC). Suy ra: AMCK là h.c.n(đpcm)

b) Vì AMCK là h.c.n.(chứng minh trên) nên AC=MK.

Mà AB=AC(tính chất tam giác cân). Do đó: AB=MK(=AC) (đpcm).

c) Để AMCK là hình vuông thì AM=AK⇒ΔAMK cân tại A. Khi đó đường trung tuyến AI sẽ đồng thời là đường cao, hay AI⊥MK.

Mặt khác, ta có: AB=MK(chứng minh trên); AK=BM(=MC). Do đó: AKMB là hình bình hành.

Suy ra:AB║MK. Mà MK⊥AI.nên AB⊥AI⇒AB⊥AC. Ta lại có: tam giác ABC cân tại A.

vậy nên: để AMCK là hình vuông thì tam giác ABC vuông cân tại A.

Bình luận (0)

Các câu hỏi tương tự
LK
Xem chi tiết
LK
Xem chi tiết
PT
Xem chi tiết
QT
Xem chi tiết
HH
Xem chi tiết
LH
Xem chi tiết
MX
Xem chi tiết
LN
Xem chi tiết
NA
Xem chi tiết