Cho tam giác ABC (AB<AC). Đường cao AH (H thuộc BC). Gọi I là trung điểm của AC, E là điểm đối xứng với H qua I. Gọi M,N lần lượt là trung điểm của HC,CE. Các đường thẳng AM,AN cắt HE tại G và K. a) Tứ giác AHCE là hình gì? b) Chứng minh K đối xứng với G qua I c) Góc C của tam giác ABC bằng bao nhiêu độ để tứ giác AHCE là hình vuông
a: Xét tứ giác AHCE có
I là trung điểm của AC
I là trung điểm của HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
c: Để AHCE là hình vuông thì CA là tia phân giác của góc ECH và EC=EH
=>\(\widehat{ACB}=45^0\)