Cho tam giác ABC vuông tại A, M là một điểm trên AC. Đường tròn đường kính CM cắt BM và BC lần lượt tại D và N; AD cắt đường tròn tại S. Chứng minh rằng:
a) A, B, C, D cùng thuộc một đường tròn.
b) CA là phân giác góc SCB.
c) Các đường AB, MN, CD đồng quy.
GIÚP MÌNH VỚI MAI MÌNH THI RÙIIII
cho A nằm ngoài đường tròn (O), đường kính BC. AB và AC cắt (O) thứ tự tạo M và N. Gọi I là giao điểm của BN và CM. chứng minh AI vuông góc với BC
Cho đường tròn tâm O, đường kính AB và S là một điểm nằm bên ngoài đường tròn. SA và SB lần lượt cắt đường tròn tại M,N. Gọi H là giao điểm của BM và AN. Chứng minh SH vuông góc với AB
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn O các đường cao AM , BN cho tam giác ABC cắt nhau tại H và cắt đường tròn lần lượt tại D và E Chứng minh A, tứ giác MHNC nội tiếp đường tròn B, CD = CE C, CB là tia phân giác của góc HCD
Cho đường tòn tâm O, đường kính AB và S là một điểm nằm bên ngoài đường tòn. SA và SB lần lượt cắt đường tròn tại M, N. Gọi H là giao điểm của BM và AN. Chứng minh rằng SH vuông góc với AB.
Cho nửa đường tròn tâm (O) đường kính BC ,vẽ tam giác ABC nhọn(điểm A nằm ngoài nửa đường tròn ,A thuộc cùng nửa mặt phẳng với nửa đường tròn có bờ BC) ,AB và AC cắt nửa đường tròn tại D và E ,H là giao điểm của BE và CD ,F là giao điểm của BH và CDCm:a)tứ giác ADHE là tứ giác nội tiếp b) cm AE.AC=AB.AD
AI GIÚP MK VS :((
Cho nữa đường trong đường kính AB. Trên nữa đường tròn lấy 2 điểm C,D (D thuộc cung AC sao góc COD=90). Gọi H, K lần lượt là giao điểm cuuar AC với BD và AD với BC. Chứng minh
a/CM tam BDK là tam giác vuông cân
b/KH vuông góc AB ( ko làm cx đc ạ)
c/4 điểm C,H,D,K cùng thuộc 1 đường tròn. Xác định tâm của đường tròn đó
Cho ∆nhọn ABC nội tiếp đường tròn(O) gọi M là giao điểm bất kì trên cung nhỏ BC của đường tròn (O) CM không trùng với BC kẻ MH vuông góc với đường thẳng AB tại H MK vuông góc với đường thẳng AC tại K a.chứng minh tứ giác AHMK nội tiếp b.chứng minh MH.MC=MK.MB
Cho đường tròn tâm O đường kính AB và S là một điểm nằm ngoài đường tròn. Vẽ đường thẳng SA và SB lần lượt cắt (O) tại điểm thứ hai M,N. Gọi H là giao điểm của AN và BM. Chứng minh rằng 1) SH ⊥ AB 2) HM . HB = HN . HA