Cho nửa đường tròn tâm (O) đường kính BC ,vẽ tam giác ABC nhọn(điểm A nằm ngoài nửa đường tròn ,A thuộc cùng nửa mặt phẳng với nửa đường tròn có bờ BC) ,AB và AC cắt nửa đường tròn tại D và E ,H là giao điểm của BE và CD ,F là giao điểm của BH và CDCm:a)tứ giác ADHE là tứ giác nội tiếp b) cm AE.AC=AB.AD
AI GIÚP MK VS :((
a) Xét (O) có
ΔBDC nội tiếp đường tròn(B,D,C∈(O))
BC là đường kính(gt)
Do đó: ΔBDC vuông tại D(Định lí)
⇔CD⊥BD tại D
⇔CD⊥AB tại D
⇔\(\widehat{ADC}=90^0\)
hay \(\widehat{ADH}=90^0\)
Xét (O) có
ΔBEC nội tiếp đường tròn(B,E,C∈(O))
BC là đường kính(gt)
Do đó: ΔBEC vuông tại E(Định lí)
⇔BE⊥CE tại E
⇔BE⊥AC tại E
⇔\(\widehat{AEB}=90^0\)
hay \(\widehat{AEH}=90^0\)
Xét tứ giác ADHE có
\(\widehat{ADH}\) và \(\widehat{AEH}\) là hai góc đối
\(\widehat{ADH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ADHE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét ΔABE vuông tại E và ΔACD vuông tại D có
\(\widehat{BAE}\) chung
Do đó: ΔABE∼ΔACD(g-g)
⇔\(\dfrac{AB}{AC}=\dfrac{AE}{AD}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB\cdot AD=AC\cdot AE\)(đpcm)