Ôn tập chương III

NT

Cho PT a) (m-1)x^2-(2m-1)x+m+1=0.Tìm m để phương trình luôn có 2 nghiệm phân biệt và nghiệm này gấp 3 lần nghiệm kia

b) 3x^2+4(m-1)x+m^2-4m+1=0.Tìm m để phương trình luôn có 2 nghiệm phân biệt x1, x2 sao cho 1/x1+1/x2=1/2(x1+x2)

c) 3x^2-2(m-1)x+3m-5=0.Tìm m để phương trình luôn có 2 nghiệm phân biệt x1, x2 sao cho x1-x2=0

NT
10 tháng 12 2018 lúc 0:20

help me! đang cần gấp ạ ! mong mọi người giúp đỡ !!!

Bình luận (0)
NT
5 tháng 12 2022 lúc 9:17

a: TH1: m=1

Pt sẽ là -(2*1-1)x+1+1=0

=>-x+2=0

=>x=2(loại)

TH2: m<>1

\(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\left(m+1\right)\)

\(=4m^2-4m+1-4m^2+4=-4m+5\)

Để phương trình có hai nghiệm phân biệt thì -4m+5>0

=>m<5/4

Theo đề, ta có hệ:

\(\left\{{}\begin{matrix}x_1-3x_2=0\\x_1+x_2=\dfrac{2m-1}{m-1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x_2=\dfrac{-2m+1}{m-1}\\x_1=3x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{4\left(m-1\right)}\\x_1=\dfrac{6m-3}{4m-4}\end{matrix}\right.\)

x1x2=m+1/m-1

=>\(\dfrac{\left(2m-1\right)\left(6m-3\right)}{16\left(m-1\right)^2}=\dfrac{m+1}{m-1}\)

=>\(\dfrac{\left(2m-1\right)\left(6m-3\right)}{16\left(m-1\right)^2}=\dfrac{16\left(m-1\right)\left(m+1\right)}{16\left(m-1\right)^2}\)

=>\(16m^2-16=12m^2-12m+3\)

=>4m^2+12m-19=0

hay \(x=\dfrac{-3\pm2\sqrt{7}}{2}\)

c: \(\text{Δ}=\left(2m-2\right)^2-12\left(3m-5\right)\)

\(=4m^2-8m+4-36m+60=4m^2-44m+64\)

Để phương trình có hai nghiệm phân biệt thì m^2-11m+16>0

=>\(\left\{{}\begin{matrix}x< \dfrac{11-\sqrt{57}}{2}\\x>\dfrac{11+\sqrt{57}}{2}\end{matrix}\right.\)

Theo đề, ta có hệ:

x1-x2=0 và x1+x2=2m-2/3

=>2x1=(2m-2)/3 và x1=x2

=>x1=x2=m-1/3

x1*x2=3m-5/3

=>\(\dfrac{m^2-2m+1}{9}=\dfrac{3m-5}{3}\)

=>m^2-2m+1=9m-15

=>m^2-11m+16=0

hay \(m\in\varnothing\)

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
GJ
Xem chi tiết
NL
Xem chi tiết
RG
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
PN
Xem chi tiết
NH
Xem chi tiết