Ôn tập chương III

SK
Hướng dẫn giải Thảo luận (1)

Gọi x là số sản phẩm sản xuất trong một ngày theo định mức.

Điều kiện x nguyên dương. Theo đề ta có chương trình:

\(\dfrac{360}{x}=\dfrac{360+\dfrac{360.5}{100}}{x+9}+1\)

⇔ x2 + 27x – 3240 = 0

⇒ x1= -72 (loại), x2 = 45.

Thời gian giao hoàn thành kế hoạch là = 8 ngày

Nếu sản xuất theo thời gian đã định với năng suất mới thì số sản phẩm làm được là (45+9).8=432 sản phẩm.

Trả lời bởi Trần Quang Đài
SK
Hướng dẫn giải Thảo luận (1)

Bấm MODE nhập 5 nhập 3

a, bấm 5 = -3 = -7 = ta được \(x_1=\dfrac{3+\sqrt{149}}{10};x_2=\dfrac{3-\sqrt{149}}{10}\)

Tương tự cho các câu còn lại

Trả lời bởi Trần Quang Đài
SK
Hướng dẫn giải Thảo luận (1)

\(a,\Leftrightarrow\dfrac{\left(3x+4\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{4+3x^2-12}{\left(x-2\right)\left(x+2\right)}\)

ĐKXĐ:\(x\ne2;x\ne-2\)

\(\Rightarrow3x^2+10x+8-x+2-4-3x^2+12=0\)

\(\Leftrightarrow\)\(9x+18=0\)

\(\Leftrightarrow x=-2\)(loại).
Vậy phương trình vô nghiệm.

b,ĐKXĐ:\(x\ne\dfrac{1}{2}\)

PT đã cho \(\Rightarrow6x^2-4x+6-6x^2+13x-5=0\)

\(\Leftrightarrow9x+1=0\)

\(\Leftrightarrow x=-\dfrac{1}{9}\left(tmđk\right)\)

c,\(ĐKXĐ:x\ge2\)

Bình phương 2 vế ta được:

\(x^2-4-x^2+2x-1=0\)

\(\Leftrightarrow2x-5=0\)

\(\Leftrightarrow x=\dfrac{5}{2}\left(tmđk\right)\)

Trả lời bởi Trần Quang Đài
SK
Hướng dẫn giải Thảo luận (1)

Gọi p/s thứ nhất là \(\dfrac{1}{x}\), p/s thứ 2 là \(\dfrac{1}{y}\), p/s thứ 3 là \(\dfrac{1}{z}\)

Theo đề bài ta có : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\) (1)

\(\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{z}\); \(\dfrac{1}{x}+\dfrac{1}{y}=5\cdot\left(\dfrac{1}{z}\right)\).

Thay biểu thức \(\dfrac{1}{x}+\dfrac{1}{y}=5\cdot\left(\dfrac{1}{z}\right)\) trên vào (1) ta được :

\(5\cdot\left(\dfrac{1}{z}\right)+\dfrac{1}{z}=1\Rightarrow z=6\) Vậy phân số thứ ba là \(\dfrac{1}{6}\).

Ta có : \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{1}{x}+\dfrac{1}{y}=5\cdot\dfrac{1}{6}\end{matrix}\right.\left(Đề-bài\right)\)

Bài toán tổng hiệu \(\dfrac{1}{x}\) là số lớn, \(\dfrac{1}{y}\) là số bé (do \(\dfrac{1}{x}-\dfrac{1}{y}\) ra số dương).

Vậy \(\dfrac{1}{x}=\dfrac{\left(\dfrac{1}{6}+5\cdot\dfrac{1}{6}\right)}{2}=\dfrac{1}{2}\); \(\dfrac{1}{y}=5\cdot\dfrac{1}{6}-\dfrac{1}{2}=\dfrac{1}{3}\)

Vậy phân số thứ nhất là \(\dfrac{1}{2}\), phân số thứ hai là \(\dfrac{1}{3}\), phân số thứ ba là \(\dfrac{1}{6}\).

Trả lời bởi Đức Minh
SK
Hướng dẫn giải Thảo luận (1)

Gọi x (giờ), y(giờ) là thời gian để công nhân thứ nhất, thứ hai làm riêng để sơn xong bức tường.

Ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{7}{x}+\dfrac{4}{y}=\dfrac{5}{9}\\\dfrac{4}{x}+\dfrac{4}{y}=1-\dfrac{5}{9}-\dfrac{1}{18}=\dfrac{7}{18}\end{matrix}\right.\)

Giải hệ phương trình trên ta được: \(\dfrac{1}{x}=\dfrac{1}{18};\dfrac{1}{y}=\dfrac{1}{24}\)

Suy ra x = 18, y = 24.

Vậy mỗi người làm riêng, theo thứ tự, thời gian sơn xong bức tường là 18 giờ và 24 giờ.

Trả lời bởi Trần Quang Đài
SK
Hướng dẫn giải Thảo luận (1)

mấy bài này là ở lớp 9 học kì 2 dùng cộng đại số là nhanh nhất hoặc bấm máy tính

Trả lời bởi Trần Quang Đài
SK
Hướng dẫn giải Thảo luận (2)

Nếu mọi nghiệm của phương trình f(x) = g(x) đều là nghiệm của phương trình f1(x) = g1(x) thì phương trình

f1(x) = g1(x) được gọi là phương trình hệ quả của phương trình f(x) = g(x).

Ta viết f(x) = g(x) f1(x) = g1(x).

Ví dụ: Giải phương trình:

(4)

Giải

Điều kiện của phương trình (4) là x ≠ 0 và x ≠ 1.

Nhân hai vế của phương trình (4) với x(x - 1) ta được phương trình hệ quả:

(4) x + 3 + 3(x - 1) = x(2 - x)

x2 + 2x = 0

x(x + 2) = 0.

Phương trình cuối cùng có hai nghiệm là x = 0 và x = -2.

Ta thấy x = 0 không thỏa mãn điều kiện của phương trình (4), đó là nghiệm ngoại lai, nên bị loại. Còn lại x = -2 thỏa mãn điều kiện và thỏa mãn phương trình (4).

Vậy phương trình (4) có nghiệm duy nhất là x = -2.

Trả lời bởi Nguyễn Quốc Anh
SK
Hướng dẫn giải Thảo luận (2)

Hai phương trình (cùng ẩn) được gọi là tương đương nếu chúng có cùng tập nghiệm.

Hai phương trình \(2x-5=0\)\(3x-\dfrac{15}{2}=0\) tương đương với nhau vì cùng có nghiệm duy nhất \(x=\dfrac{5}{2}\)

Trả lời bởi Linh Diệu
SK
Hướng dẫn giải Thảo luận (3)

a, ĐK x\(\ge5\) Đặt \(\sqrt{x-5}=y\Rightarrow x=y^2+5\)

Phương tình đã cho trở thành:\(y^2+5+y=y+6\)

\(\Leftrightarrow y^2-1=0\)

\(\Leftrightarrow y=-1;y=1\)

y=-1 loại vì \(\sqrt{x=5}\ge0\)

Ta có \(y=1\Rightarrow\sqrt{x-5}=1\Leftrightarrow x=6\)

b,làm tương tự câu a

c,ĐK:\(x\ge2\) Phương trình đã cho tương đương:\(\dfrac{x^2-8}{\sqrt{x-2}}=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=2\sqrt{2}\\x_2=-2\sqrt{2}\left(l\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm \(x=2\sqrt{2}\).

Trả lời bởi Trần Quang Đài
SK
Hướng dẫn giải Thảo luận (1)