Ôn tập chương III

RG

Giúp em đưa ra lời giải chi tiết và dễ hiểu với bài này:

Cho phương trình \(2x^2+2\left(m-1\right)x+m^2-1=0\). Tìm m để phương trình có hai nghiệm phân x1,x2 sao cho biểu thức \(P=\left(x_1-x_2\right)^2\) đạt giá trị lớn nhất.

NL
21 tháng 12 2020 lúc 0:32

\(\Delta'=\left(m-1\right)^2-2\left(m^2-1\right)=-m^2-2m+3>0\)

\(\Rightarrow-3< m< 1\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\left(m-1\right)\\x_1x_2=\dfrac{m^2-1}{2}\end{matrix}\right.\)

\(P=\left(x_1-x_2\right)^2=x_1^2+x_2^2-2x_1x_2\)

\(P=x_1^2+x_2^2+2x_1x_2-4x_1x_2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(P=\left(m-1\right)^2-4\left(\dfrac{m^2-1}{2}\right)\)

\(P=-m^2-2m+3=-\left(m^2+2m+1\right)+4\) 

\(P=-\left(m+1\right)^2+4\le4\)

\(P_{max}=4\) khi \(m+1=0\Leftrightarrow m=-1\) (thỏa mãn)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HN
Xem chi tiết
GJ
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
NL
Xem chi tiết
PT
Xem chi tiết