Cho (O) đường kính AB, M là điểm chính giữa của cung AB, C là điểm bất kì thuộc cung AB sak cho C và M nằm khác phía so với AB, CM cắt AB tại D. Vẽ dây AE vuông góc với CM tại Fa/ Chứng minh ACEM là hình thang cânb/Vẽ CH vuông góc với AB. Chứng minh CH là tia phân giác góc CHO
Cho đường tròn (0, R) và hai đường kính AB, CD vuông góc với nhau. Trên đoạn OB lấy điểm I. Tia Cl cắt đường tròn (0) tại điểm thứ hai là E. 1) Biết sđ cung DE = 50 độ. Tính số đo góc DCE và góc BOE, 2) Chứng minh 4 điểm: OIED cùng thuộc 1 đường tròn, b) Nối AE cắt CD tại H. Chứng minh: HD.IE= BI.DE
Cho đường tròn O và hai đường kính AB CD vuông góc với nhau lấy một điểm M trên cung nhỏ BC g vẽ tiếp tuyến với đường tròn O tại M tiếp tuyến này cắt CD tại S lấy điểm F thuộc cung nhỏ BC cắt AB ở E Chứng minh:
a, BD2 = DE.DF
b, góc MSD = góc MBA
Cho đường tròn O và hai đường kính AB CD vuông góc với nhau lấy một điểm M trên cung nhỏ BC g vẽ tiếp tuyến với đường tròn O tại M tiếp tuyến này cắt CD tại S lấy điểm F thuộc cung nhỏ BC cắt AB ở E Chứng minh:
a,BD mũ 2 = DE.DF
b, góc MSD = góc 2MBA
Cho nữa đường trong đường kính AB. Trên nữa đường tròn lấy 2 điểm C,D (D thuộc cung AC sao góc COD=90). Gọi H, K lần lượt là giao điểm cuuar AC với BD và AD với BC. Chứng minh
a/CM tam BDK là tam giác vuông cân
b/KH vuông góc AB ( ko làm cx đc ạ)
c/4 điểm C,H,D,K cùng thuộc 1 đường tròn. Xác định tâm của đường tròn đó
Cho tam giác ABC nội tiếp đường tròn (O). Trên cung nhỏ BC của đường tròn (O), lấy điểm M. Gọi D, E, F lần lượt là hình chiếu vuông góc của M lên các đường thẳng BC, CA, AB. Chứng minh rằng ba điểm D, E, F thẳng hàng.
Cho ∆nhọn ABC nội tiếp đường tròn(O) gọi M là giao điểm bất kì trên cung nhỏ BC của đường tròn (O) CM không trùng với BC kẻ MH vuông góc với đường thẳng AB tại H MK vuông góc với đường thẳng AC tại K a.chứng minh tứ giác AHMK nội tiếp b.chứng minh MH.MC=MK.MB
Cho đường tròn (O) và hai đường kính AB, CD vuông góc với nhau. Lấy một điểm M trên cung AC rồi vẽ tiếp tuyến với đường tròn (O) tại M. Tiếp tuyến này cắt đường thẳng CD tại S.
Chứng minh rằng \(\widehat{MSD}=2\widehat{MBA}\) ?
Cho tam giác ABC cân tại A, góc A nhọn.đường vuông góc với AB tại A cắt đường thẳng BC ở D .kẻ DF vuông góc với AC tại E.gọi M là trung điểm của BC đường thẳng AM và DE cắt nhau tại F chứng minh: Tứ giác AMED nội tiếp 1 đường tròn Giúp mik bài này với!!