Bài 3: Góc nội tiếp

VL

Cho tam giác ABC nội tiếp đường tròn (O). Trên cung nhỏ BC của đường tròn (O), lấy điểm M. Gọi D, E, F lần lượt là hình chiếu vuông góc của M lên các đường thẳng BC, CA, AB. Chứng minh rằng ba điểm D, E, F thẳng hàng.

NL
21 tháng 1 2021 lúc 17:41

Tứ giác ABMC nội tiếp \(\Rightarrow\widehat{ABM}+\widehat{ACM}=180^0\)

Mà \(\widehat{ACM}+\widehat{MCE}=180^0\Rightarrow\widehat{ABM}=\widehat{MCE}\)

D và E cùng nhìn CM dưới 1 góc vuông \(\Rightarrow CDME\) nội tiếp

\(\Rightarrow\widehat{MCE}=\widehat{MDE}\) (cùng chắn ME) \(\Rightarrow\widehat{ABM}=\widehat{MDE}\)

Mặt khác D và F cùng nhìn BM dưới 1 góc vuông \(\Rightarrow BFDM\) nội tiếp

\(\Rightarrow\widehat{ABM}+\widehat{FDM}=180^0\)

\(\Rightarrow\widehat{MDE}+\widehat{FDM}=180^0\Rightarrow\) D, E, F thẳng hàng

Bình luận (0)
NL
21 tháng 1 2021 lúc 17:41

Hình vẽ:

undefined

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
AD
Xem chi tiết
SK
Xem chi tiết
HT
Xem chi tiết
NL
Xem chi tiết