a: Xét ΔABE vuông tại E và ΔDBA vuông tại A có
góc ABE chung
=>ΔABE đồng dạng với ΔDBA
=>BA/BD=BE/BA
=>BA^2=BD*BE
b: Xét ΔEDF vuông tại E và ΔEGB vuông tại E có
góc EDF=góc EGB
=>ΔEDF đồng dạng với ΔEGB
=>ED/EG=EF/EB
=>ED*EB=EG*EF
=>EG*EF=AE^2
a: Xét ΔABE vuông tại E và ΔDBA vuông tại A có
góc ABE chung
=>ΔABE đồng dạng với ΔDBA
=>BA/BD=BE/BA
=>BA^2=BD*BE
b: Xét ΔEDF vuông tại E và ΔEGB vuông tại E có
góc EDF=góc EGB
=>ΔEDF đồng dạng với ΔEGB
=>ED/EG=EF/EB
=>ED*EB=EG*EF
=>EG*EF=AE^2
Đề bài :
- Cho hình chữ nhật ABCD, AD < AB, đường cao AH vuông góc BD tại H .
1) CM ΔHAD đồng dạng với ΔABD
2) Với AB = 20cm , AD = 15cm . Tính DB và AH
3) CM AH² = HD . HB
4) Trên tia đối DA lấy E sao cho DE < AD . Vẽ EM ⊥ BD tại M , EM cắt BD tại O . Vẽ AK ⊥ BE tại K, vẽ AF ⊥ OD tại F. CMR: H, F , K thẳng hàng .
Cho tam giác ABC nhọn, có 3 đường cao AD, BE, CF cắt nhau tại H. Gọi M, N là
trung điểm của BC và AH. Gọi I là giao điểm của MN và EF,đường phân giác góc A cắt MN tại K.
a)CMR: MN vuông góc với EF
b)CMR: NHI = HMI
c) CMR: HK là phân giác góc EHC.
Cho hình vuông ABCD có AB = a, hai đường chéo cắt nhau tại O. Trên hai cạnh AB, BC lần lượt lấy hai điểm E và G sao cho AE= BG. Gọi H là giao điểm của tia AG và tia DC, I là giao điểm của tia OG và đoạn thẳng BH.
1) Chứng minh rằng: AOGE là tam giác vuông cân.
cho hinh chữ nhật ABCD (AB>AD), Kẻ AH ⊥BD tại H
a) CM ΔABH ∼ ΔBDC
b) CM \(AD^2\) = DB.DH
c) Gọi, M,N lần lượt là trung điểm BH, AH. CM ΔBAM ∼ ΔAND
Cho hình chữ nhật ABCD có AB=6cm,BC=8cm.Tia phân giác của góc BAC cắt tia BC và đoạn CD lần lượt tại I và K
1)Tính AC,BI,IC
2)Chứng minh:\(\Delta\)ABI đồng dạng với \(\Delta\)KCI
3)Chứng minh:BI.KD=AB.AD
Cho hình bình hành ABCD. Qua điểm A ta kẻ một đường thẳng bất kì cắt đoạn thẳng BD, BC, CD lần lượt tại E, F, G. CMR
a.△DEA đồng dạng vs △ BFE
b.AB. AG=AF. DG
c, AE2 =AF. EG
d, tích BF.DG không đổi
e. Cho AB=10cm,AD=9cm, DG=6cm. Tính độ dài đoạn thẳng BF và chứng minh 9S△BEA= 25S△DEG
Giải giúp mk câu e
Cho hcn ABCD,kẻ DE vuông góc với AC tại E.Gọi M,N,P lần lượt là trung điểm của BC,AE và DE.C/m:
a,AD/DC=AE/DE
b,Tam giác AND~tam giác DPC
c,ND vuông góc với NM
Cho ∆ABC vuông tại A, đường cao AH. Đường phân giác của góc ABC cắt AC tại D và cắt AH tại E.
a)Chứng minh: tam giác ABC đồng dạng tam giác HBA và AB2 = BC.BH
b)Biết AB = 9cm, BC = 15cm. Tính DC và AD
c)Gọi I là trung điểm của ED. Chứng minh: góc BIH = góc ACB.
Cho hcn ABCD,kẻ DE vuông góc với AC tại E.Gọi M,N,P lần lượt là trung điểm của BC,AE và DE.C/m: a,AD/DC=AE/DE b,Tam giác AND~tam giác BPC c,ND vuông góc với NM