Bài 3: Góc nội tiếp

QG

Cho đường tròn tâm o và 1 điểm m nằm ngoài đường tòn .Vẽ 2 tiếp tuến ma ,mb và các tuyến mde với đường tròn tâm o ( a,b,d,e cùng thuộc đường tròn) .mo cắt ab tại h

chứng minh

a, md.me=ma bình

b,md.me=mh .mo

mình cảm ơn

NT
28 tháng 2 2021 lúc 20:51

a) Xét (O) có 

\(\widehat{AED}\) là góc nội tiếp chắn \(\stackrel\frown{AD}\)

\(\widehat{DAM}\) là góc tạo bởi tia tiếp tuyến AM và dây cung AD

Do đó: \(\widehat{AED}=\widehat{DAM}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)

\(\Leftrightarrow\widehat{AEM}=\widehat{DAM}\)

Xét ΔAEM và ΔDAM có 

\(\widehat{AEM}=\widehat{DAM}\)(cmt)

\(\widehat{AMD}\) chung

Do đó: ΔAEM∼ΔDAM(g-g)

\(\dfrac{ME}{MA}=\dfrac{MA}{MD}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(ME\cdot MD=MA^2\)(đpcm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAOM vuông tại A có AH là đường cao ứng với cạnh huyền AO, ta được:

\(MH\cdot MO=AM^2\)

mà \(ME\cdot MD=AM^2\)(cmt)

nên \(MD\cdot ME=MH\cdot MO\)(đpcm)

Bình luận (0)

Các câu hỏi tương tự
BS
Xem chi tiết
ND
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
VL
Xem chi tiết
BV
Xem chi tiết
SK
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết