Bài 7: Tứ giác nội tiếp

LA

Cho đường tròn (o) ngoại tiếp tam giác nhọn ABC.Vẽ đường cao AH (H thuộc cạnh BC).Vẽ HE vuông góc với AB (E thuộc AB),HF vuông góc với AC (F thuộc AC).
a) CMR: AEHF là tứ giác nội tiếp
b) CMR: góc ABC + góc HFE = 90o
c) Gọi M là giao điểm của BF và HE,N là giao điểm của HF và CE.
Chứng minh rằng MN song song với BC
Mình cần gấp giúp mình với!!!

NQ
28 tháng 3 2020 lúc 18:47

Tứ giác nội tiếp

a) Ta có: \(HE\perp AB\) , \(HF\perp AC\) -> \(\widehat{HEA}\) + \(\widehat{HFA}=180^o\) -> \(AEHF\) nội tiếp.

b) -> \(\widehat{ABC}+\widehat{HFE}=\widehat{ABH}+\widehat{HAE}=90^o\)

c) Ta có: \(AH\perp BC\) , \(HE\perp AB\) , \(HF\perp AC\) , \(AEHF\) nội tiếp.

-> \(\widehat{AEF}=\widehat{AHF}=\widehat{ACH}\left(\widehat{HAC}=90^O\right)\) -> \(EFCB\:\) nội tiếp.

Mà ta có: \(HE\perp AB\) , \(HF\perp AC\rightarrow\widehat{MEB}=\widehat{NFC}=90^O\)

\(\widehat{EFB}=\widehat{EFC}\) do \(EFCB\) nội tiếp.

-> \(\widehat{EBM}=\widehat{FCN}\rightarrow\widehat{EMB}=\widehat{FNC}\)

-> \(\widehat{EMF}=\widehat{ENF}\rightarrow EFNM\) nội tiếp.

-> \(\widehat{ENM}=\widehat{EFM}=\widehat{ECB}\rightarrow MN//BC\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
JK
Xem chi tiết
HH
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LL
Xem chi tiết
LB
Xem chi tiết
HL
Xem chi tiết