cho a, b,c duong va a+b=c=1
chumg minh \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
Cho các số dương a,b,c thỏa mãn a+b+c=4
CMR: \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}>4\)
b1 cho a,b>0 cmr
a) \(a+b\ge2\sqrt{a}.\sqrt{b}\)
b)\(a+b+c\ge\sqrt{a}.\sqrt{b}+\sqrt{a}.\sqrt{c}+\sqrt{b}.\sqrt{c}\)
cho a,b,c dương CMR$\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a} \geq a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb}$
Cho a, b, c là các số thực dương. CMR: \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\)
Cho S = \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}\)với a, b,c dương
CMR: S>2
Chứng minh rằng nếu a,b là các số duong thỏa mãn 1/a +1/b+1/c=0 thì \(\sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\)
Cho a,b,c là các số thực không âm thỏa mãn \(a^2+b^2+c^2=6\).Tìm giá trị nhỏ nhất:\(P=\sqrt{4-a^2}+\sqrt{4-b^2}+\sqrt{4-c^2}\)
cho a , b , c > 0 thỏa mãn \(a+b+c+\sqrt{abc}=4\)
Tính giá trị : \(p=\sqrt{a\left(4-b\right)\left(4-c\right)+b\left(4-c\right)\left(4-a\right)-c\left(4-a\right)\left(4-b\right)}-\sqrt{abc}\)