\(VT=\sqrt{4-a}+\sqrt{4-b}+\sqrt{4-c}\)
Ta có BĐT phụ \(\sqrt{4-a}>-\dfrac{1}{2}a+2\)
\(\Leftrightarrow-\dfrac{1}{4}a\left(a-4\right)>0\forall0< a< 4\) (đúng)
Tương tự cho 2 BĐT còn lại cũng có:
\(\sqrt{4-b}>-\dfrac{1}{2}b+2;\sqrt{4-c}>-\dfrac{1}{2}c+2\)
Cộng theo vế 3 BĐT trên ta có:
\(VT>-\dfrac{1}{2}\left(a+b+c\right)+6=4=VP\)
ta có:
\(2VT=\sqrt{4\left(a+b\right)}+\sqrt{4\left(a+c\right)}+\sqrt{4\left(c+a\right)}\)
\(=\sqrt{\left(a+b+c\right)\left(a+b\right)}+\sqrt{\left(a+b+c\right)\left(b+c\right)}+\sqrt{\left(a+b+c\right)\left(c+a\right)}\)
\(>\sqrt{\left(a+b\right)^2}+\sqrt{\left(b+c\right)^2}+\sqrt{\left(c+a\right)^2}=2\left(a+b+c\right)=8\)
\(\Rightarrow VT>4\)(đpcm)
Từ [TEX]\frac{a}{c}= \frac{b}{d}
ightarrow \frac{4a}{6c}= \frac{4b}{6d}
ightarrow \frac{4a^2}{6ac}= \frac{4b^2}{6bd}[/TEX]
[TEX]
ightarrow \frac{4a^2}{4b^2}{6ac}{6bd}= \frac{4a^2-6ac}{4b^2-6bd}= \frac{4a^2+6ac}{4b^2+6bd}[/TEX]
Do đó [TEX]\frac{4a^2-6ac}{4b^2-6bd}= \frac{4a^2+6ac}{4b^2+6bd}
ightarrow ( 4a^2 - 6ac)(4b^2 + 6bd) =( 4a^2 +6ac)(4b^2 - 6bd)[/TEX].
Ta có đpcm.