Bài 1: Căn bậc hai

M2

cho a,b,c dương CMR$\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a} \geq a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb}$

H24
1 tháng 3 2021 lúc 22:23

Ta thấy: `(a-b)^2≥0`

`⇒a^2-2ab+b^2≥0`

`⇒a^2+b^2≥2ab`

`⇒a^2+2ab+b^2≥4ab`

`⇒(a+b)^2≥4ab`

`⇒a+b≥2\sqrt{ab}` $(*)$

Từ $(*)$.Suy ra: `a^3/b+bc≥2a\sqrt{ac}    (1)`

` b^3/c+ca≥2b\sqrt{ba}    (2)`

` c^3/a+ab≥2c\sqrt{cb}     (3)`

Từ `(1);(2);(3)` ta được:

`a^3/b+b^3/c+c^3/a+(ab+bc+ca)≥2(a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb})`  $(**)$

Từ $(*)$.Suy ra:

`a^3/b+ab≥2a^2(4)`

`b^3/c+bc≥2b^2(5)`

`c^3/b+bc≥2c^2(6)`

Từ `(4);(5);(6)` ta có:

`a^3/b+ab+b^3/c+bc+c^3/b+bc≥2a^2+2b^2+2c^2`

`⇒a^3/b+b^3/c+c^3/b≥2a^2+2b^2+2c^2-ab-bc-ca`

`⇒2a^2+2b^2+2c^2-ab-bc-ca≥a^2+b^2+c^2≥ab+bc+ca`

`⇒a^3/b+b^3/c+c^3/b≥ab+bc+ca`

`⇒2(a^3/b+b^3/c+c^3/b)≥a^3/b+b^3/c+c^3/b+ab+bc+ca` $(***)$

Từ $(**);(***)$ ta có: `2(a^3/b+b^3/c+c^3/b)≥2(a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb})`

`⇒a^3/b+b^3/c+c^3/b≥a\sqrt{ac}+b\sqrt{ba}+c\sqrt{cb}`

Bình luận (0)
NL
1 tháng 3 2021 lúc 23:43

Em có thể làm thế này cũng được:

\(\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge a^2+b^2+c^2\ge\dfrac{1}{2}\left(a^2+ac\right)+\dfrac{1}{2}\left(b^2+ab\right)+\dfrac{1}{2}\left(c^2+bc\right)\)

\(\ge\dfrac{1}{2}.2a\sqrt{ac}+\dfrac{1}{2}.2b\sqrt{ab}+\dfrac{1}{2}.2c\sqrt{bc}\) (đpcm)

Bình luận (1)

Các câu hỏi tương tự
TM
Xem chi tiết
TA
Xem chi tiết
MS
Xem chi tiết
MH
Xem chi tiết
VC
Xem chi tiết
VC
Xem chi tiết
MS
Xem chi tiết
PP
Xem chi tiết
MH
Xem chi tiết