Lời giải:
Ta có:
$2(ab+bc+ac)=(a+b+c)^2-(a^2+b^2+c^2)=6^2-12=24=2(a^2+b^2+c^2)$
$\Rightarrow 2(a^2+b^2+c^2)-2(ab+bc+ac)=0$
$\Leftrightarrow (a^2+b^2-2ab)+(b^2+c^2-2bc)+(c^2+a^2-2ac)=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
$\Rightarrow a-b=b-c=c-a=0$
$\Rightarrow a=b=c$. Mà $a+b+c=6$ nên $a=b=c=2$
Khi đó:
$A=(2-3)^{2020}+(2-3)^{2020}+(2-3)^{2020}=1+1+1=3$
Đúng 2
Bình luận (0)