Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 8: a)Chứng minh rằng ( a + b + c)3- a3 – b3 – c3 = 3( a +b)(b +c)( c+ a)
b)a3 +b3 +c3 – 3abc = ( a + b + c)( a2 +b2 + c2)
(1) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
(1) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
1, Cho a, b, c thỏa mãn :
\(\left\{{}\begin{matrix}\left(a+b\right)\left(b+c\right)\left(c+a\right)=abc\\\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)=a^3b^3c^3\end{matrix}\right.\\ CMR:abc=0\)
2, a, CMR nếu x + y + z = 0 thì :
\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
b, Cho a, b,c, d thỏa mãn : a + b + c + d = 0
CMR : \(a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\)
Mọi người giải giúp mk, đc bài nào hay bài ấy nhé!
1,Cho \(a^2+b^2+c^2+3=2\left(a+b+c\right)\) .Cmr: \(a=b=c=1\)
2,Cho \(\left(a+b+c\right)^2=3\left(ab+ac+bc\right)\) .Cmr: \(a=b=c\)
3,Cho \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2\) .Cmr: \(a=b=c\)
4,Cho a,b,c,d là các số khác 0 và:
\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\) .Cmr: \(\dfrac{a}{c}=\dfrac{b}{d}\)
5,Cho \(x^2-y^2-z^2=0\) .Cmr: \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)
HELP ME!mik cần gấp lắm rồi!Thank trước nhé!
Cho \(a,b,c>0.\)CMR:
\(\left(a^3+b^3+c^3\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a+b+c\right)^2\)
Chứng minh các đẳng thức sau:
a) \(\left(a+b+c\right)^2+\left(b+c-a\right)^2+\left(a+c-b\right)^2+\left(a+b-c\right)^2=4\left(a^2+b^2+c^2\right)\)
b) \(\left(a+b+c\right)^3-\left(b+c-a\right)^3-\left(c+a-b\right)^3-\left(a+b-c\right)^3=24abc\)
Rút gọn
a) \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(5x+5\right)^2\)
b) \(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{18}+1\right)\left(3^{32}+1\right)\)
c) \(C=\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)
d) \(D=\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-b-a\right)^2\)
e)\(E=\left(a+b+c+d\right)^2+\left(a+b-c-d\right)^2+\left(a+c-b-d\right)^2+\left(a+d-b-c\right)^2\)
1)CMR: Biểu thức sau viết được dưới dạng tổng các bình phương của 2 biểu thức
\(A=x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)
2) Viết các biểu thức sau dưới dạng 3 bình phương
a) \(\left(a+b+c\right)^2+a^2+b^2+c^2\)
b)\(2\left(a-b\right)\left(c-d\right)+2\left(b-a\right)\left(c-a\right)+2\left(b-c\right)\left(a-c\right)\)