Bài 1: Căn bậc hai

MH

1/ cho a,b,c thỏa \(ab+bc+ca\ge11\)

c/m \(\sqrt[3]{a^2+3}+\dfrac{7}{5\sqrt[3]{14}}\sqrt[3]{b^2+3}+\dfrac{\sqrt[3]{9}}{5}\sqrt[3]{c^2+3}\ge\dfrac{23}{5\sqrt[3]{2}}\)

2)cho a,b,c dương thỏa a+b+c=3

c/m \(\left(a^3+b^3+c^3\right)\left(a^2-b^2\right)\left(b^2-c^2\right)\left(c^2-a^2\right)\le\dfrac{729\sqrt{3}}{8}\)

p/s: cách của mik đa phần dùng cô-si (I need another way!!)

TT
8 tháng 5 2017 lúc 22:15

câu 2 này ms làm tức thì nà

đầu tiên t c/m câu phụ \(\left(a-b\right)\left(b-c\right)\left(c-a\right)\le\dfrac{3\sqrt{3}}{2}\)

đặt P =VT ta có \(P\le\left|P\right|=\sqrt{P^2}\)

vậy ta c/m \(P^2\le\dfrac{27}{4}\)

<=> \(\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2\le\dfrac{27}{4}\)

không mất tính tổng wat giả sử \(a\ge b\ge c\) (2)

dễ thấy \(\left(b-c\right)^2\le b^2;\left(c-a\right)^2\le a^2\)

=> c/m :\(a^2b^2\left(a-b\right)^2\le\dfrac{27}{4}\Leftrightarrow4a^2b^2\left(a-b\right)^2\le\dfrac{27}{4}\)

áp dụng AM-GM ta có

\(4a^2b^2\left(a-b\right)^2=\left(2ab\right)\left(2ab\right)\left(a^2-2ab+b^2\right)\le\left[\dfrac{2\left(2ab\right)+\left(a^2-2ab+b^2\right)}{3}\right]^3=\left(\dfrac{a^2+2ab+b^2}{3}\right)^3=\dfrac{\left(a+b\right)^6}{27}\)

mặt khác từ (2) ta có \(a+b\le a+b+c=3\)

=>dpcm

@quay trở lại bài toán áp dụng câu phụ mik vừa ns c2 <=> c/m

\(\left(a^3+b^3+c^3\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{243}{4}\)

nhân 3 cho 2 vế r áp dụng AM-GM

\(\left(a^3+b^3+c^3\right)3\left(a+b\right)\left(a+c\right)\left(c+b\right)\)\(\le\dfrac{\left[a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}{4}=\dfrac{\left(a+b+c\right)^6}{4}=\dfrac{729}{4}\)

=> dpcm

Bình luận (4)
MH
7 tháng 5 2017 lúc 22:24

giúp jum t @Neet;@Ace Legona (có cách khác AM-GM thì qá tốt nha!!)

Bình luận (3)
MH
8 tháng 5 2017 lúc 23:57

áp dụng BĐT \(\sqrt[3]{\dfrac{a^3+b^3+c^3}{3}}\ge\dfrac{a+b+c}{3}\)\(\sqrt[3]{\dfrac{a^3+b^3}{2}}\ge\dfrac{a+b}{2}\) (c/m dưới dạng tổng quát)

\(\sqrt[3]{a^2+3}=\sqrt[3]{4}.\sqrt[3]{\dfrac{\dfrac{a^2+1}{2}+1}{2}}\ge\sqrt[3]{4}.\dfrac{\sqrt[3]{\dfrac{a^2+1}{2}}+1}{2}\)

\(\sqrt[3]{b^2+3}=\sqrt[3]{7}.\sqrt[3]{\dfrac{5.\dfrac{b^2+1}{5}+1+1}{7}}\ge\sqrt[3]{7}.\dfrac{5\sqrt[3]{\dfrac{b^2+1}{5}}+1+1}{ }\)

\(\sqrt[3]{c^2+3}=\sqrt[3]{12}.\sqrt[3]{\dfrac{5.\dfrac{c^2+1}{10}+1}{6}}\ge\sqrt[3]{12}.\dfrac{5\sqrt[3]{\dfrac{c^2+1}{10}}+1}{6}\)

đặt P = VT của dpcm,ta đc

\(P\ge\dfrac{1}{\sqrt[3]{2}}\left(\sqrt[3]{\dfrac{a^2+1}{2}}+1\right)+\dfrac{1}{5\sqrt[3]{2}}\left(5\sqrt[3]{\dfrac{b^2+1}{5}}+2\right)+\dfrac{1}{5\sqrt[3]{2}}\left(\sqrt[3]{\dfrac{c^2+1}{10}}+1\right)=\left(\sqrt[3]{\dfrac{a^2+1}{4}+\sqrt[3]{\dfrac{b^2+1}{10}}+\sqrt[3]{\dfrac{c^2+1}{20}}}\right)+\dfrac{8}{5\sqrt[3]{2}}\)

AM-GM bộ 3 số ta được

\(\sqrt[3]{\dfrac{a^2+1}{4}}+\sqrt[3]{\dfrac{b^2+1}{10}}+\sqrt[3]{\dfrac{c^2+1}{20}}\ge3\sqrt[9]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{800}}\)

we c/m \(3\sqrt[9]{\dfrac{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}{800}}+\dfrac{8}{5\sqrt[3]{2}}\ge\dfrac{23}{5\sqrt[3]{2}}\)

<=>\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge100\)

cắn bút bín đổi ta đc \(\left(a^2+1\right)\left[\left(b+c\right)^2+\left(bc-1\right)^2\right]\ge100\)

áp dụng BĐT cauchy- gì gì đó

\(\left(a^2+1\right)\left[\left(b+c\right)^2+\left(bc-1\right)^2\right]\ge\left[a\left(b+c\right)+\left(bc-1\right)\right]^2=\left(ab+bc+ca-1\right)^2\ge10^2=100\)=> dpcm

dấu = xảy ra <=> a=1,b=2,c=3

p/s:có j sai ns t nha cách làm của t khá rườm rà @@

Bình luận (4)
LF
9 tháng 5 2017 lúc 5:38

các bn nhìn vật vã quá chờ mk thi xong r` ta cùng nhau gank tiếp nhé :D

Bình luận (1)

Các câu hỏi tương tự
VC
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
MH
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
CH
Xem chi tiết
HN
Xem chi tiết