Ôn tập phép nhân và phép chia đa thức

ND

Cho \(a^3+b^3+c^3=3abc,abc\ne0,a+b+c\ne0\)

Chứng minh:

\(B=\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(\dfrac{1}{c}+\dfrac{1}{b}\right)\left(\dfrac{1}{c}+\dfrac{1}{a}\right)=\dfrac{8}{abc}\)

ND
10 tháng 2 2018 lúc 19:29

\(a^3+b^3+c^3=3abc\\ \Rightarrow a^3+b^3+c^3-3abc=0\\ \Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\\ \Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2=ab+bc+ac\left(a+b+c\ne0\right)\\ \Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\\ \Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\\ \Rightarrow a=b=c\\ \Rightarrow B=\dfrac{2}{a}.\dfrac{2}{b}.\dfrac{2}{c}=\dfrac{8}{abc}\)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
NM
Xem chi tiết
NA
Xem chi tiết
DC
Xem chi tiết
ML
Xem chi tiết
NT
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
LL
Xem chi tiết