Ôn tập phép nhân và phép chia đa thức

DL

Cho a, b, c thỏa mãn \(a^2+b^2+c^2=27\)\(a+b+c=9\)

Tính giá trị của biểu thức \(B=\left(a-4\right)^{2018}+\left(b-4\right)^{2019}+\left(c-4\right)^{2020}\)

AH
24 tháng 10 2018 lúc 9:54

Lời giải:

Ta thấy:

\(ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{9^2-27}{2}=27\)

Do đó: \(ab+bc+ac=a^2+b^2+c^2\)

\(\Rightarrow 2(ab+bc+ac)=2(a^2+b^2+c^2)\)

\(\Leftrightarrow 2(a^2+b^2+c^2)-2(ab+bc+ac)=0\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0\)

Vì mỗi số hạng trong tổng trên đều không âm nên để tổng của chúng bằng $0$ thì:

\((a-b)^2=(b-c)^2=(c-a)^2=0\Rightarrow a=b=c\)

Kết hợp với $a+b+c=9$ suy ra $a=b=c=3$

Do đó:

\(B=(3-4)^{2018}+(3-4)^{2019}+(3-4)^{2020}=1-1+1=1\)

Bình luận (0)
HT
25 tháng 10 2018 lúc 19:32

Ta có:

ab+bc+ac=(a+b+c)2−(a2+b2+c2)2=92−272=27

Do đó: ab+bc+ac=a2+b2+c2

⇒2(ab+bc+ac)=2(a2+b2+c2)

⇔2(a2+b2+c2)−2(ab+bc+ac)=0

⇔(a−b)2+(b−c)2+(c−a)2=0

Vì mỗi số hạng trong tổng trên đều không âm nên để tổng của chúng bằng 0 thì:

(a−b)2=(b−c)2=(c−a)2=0⇒a=b=c

Kết hợp với a+b+c=9 suy ra a=b=c=3

Do đó: ab+bc+ac=a2+b2+c2

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
PO
Xem chi tiết
LN
Xem chi tiết
TT
Xem chi tiết
TH
Xem chi tiết
PO
Xem chi tiết
DY
Xem chi tiết
ND
Xem chi tiết
AN
Xem chi tiết