Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

LG

Bài 7. Phân tích các đa thức sau thành nhân tử:
a) a2 - b2 - 2a + 2b
b) 3x - 3y - 5x (y - x)
c) 16 - x2 + 4xy - 4y2
d) (x - y + 4)2 - (2x + 3y - 1)2
e) x4 + x3 + 2x2 + x + 1
f) (x + 3)3 + (x - 3)3
g) 9x2 - 3xy + y - 6x + 1
h) x3 - 4x2 + 12x - 27

NT
24 tháng 8 2020 lúc 19:56

Bài 7: Phân tích đa thức thành nhân tử

a) Ta có: \(a^2-b^2-2a+2b\)

\(=\left(a-b\right)\left(a+b\right)-2\left(a-b\right)\)

\(=\left(a-b\right)\left(a+b-2\right)\)

b) Ta có: \(3x-3y-5x\left(y-x\right)\)

\(=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(x-y\right)\left(3+5x\right)\)

c) Ta có: \(16-x^2+4xy-4y^2\)

\(=16-\left(x^2-4xy+4y^2\right)\)

\(=16-\left(x-2y\right)^2\)

\(=\left(4-x+2y\right)\left(4+x-2y\right)\)

d) Ta có: \(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)

\(=\left(x-y+4-2x-3y+1\right)\left(x-y+4+2x+3y-1\right)\)

\(=\left(5-x-4y\right)\left(3x+2y+3\right)\)

e) Ta có: \(x^4+x^3+2x^2+x+1\)

\(=\left(x^4+2x^2+1\right)+\left(x^3+x\right)\)

\(=\left(x^2+1\right)^2+x\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+1+x\right)\)

f) Ta có: \(\left(x+3\right)^3+\left(x-3\right)^3\)

\(=\left(x+3+x-3\right)\left[\left(x+3\right)^2-\left(x+3\right)\left(x-3\right)+\left(x-3\right)^2\right]\)

\(=2x\cdot\left[x^2+6x+9-\left(x^2-9\right)+x^2-6x+9\right]\)

\(=2x\cdot\left(2x^2+18-x^2+9\right)\)

\(=2x\cdot\left(x^2+27\right)\)

g) Ta có: \(9x^2-3xy+y-6x+1\)

\(=\left(9x^2-6x+1\right)-y\left(3x-1\right)\)

\(=\left(3x-1\right)^2-y\left(3x-1\right)\)

\(=\left(3x-1\right)\left(3x-1-y\right)\)

h) Ta có: \(x^3-4x^2+12x-27\)

\(=x^3-3x^2-x^2+3x+9x-27\)

\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

Bình luận (0)

Các câu hỏi tương tự
LM
Xem chi tiết
HM
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết
BB
Xem chi tiết