Bài 12: Chia đa thức một biến đã sắp xếp

LH

Bài 5: Tìm a, b sao cho 

a/ Đa thức x4 – x3 + 6x2 – x + a chia hết cho đa thức x2 – x + 5

b/ Đa thức 2x3 – 3x2 + x + a chia hết cho đa thức x + 2.

KS
23 tháng 12 2021 lúc 17:33

Đặt \(f\left(x\right)=2x^3-3x^2+x+a\)

Ta có: phép chia \(f\left(x\right)\) cho \(x+2\) có dư là \(R=f\left(-2\right)\)

\(\Rightarrow f\left(-2\right)=2.\left(-2\right)^3-3.\left(-2\right)^2+\left(-2\right)+a\)

\(f\left(-2\right)=2.\left(-8\right)-3.4-2+a\)

\(f\left(-2\right)=-16-12-2+a\)

\(f\left(-2\right)=-20+a\)

Để \(f\left(x\right)\) chia hết cho \(x+2\) thì  \(R=0\) hay \(f\left(-2\right)=0\)

\(\Rightarrow-20+a=0\Leftrightarrow a=20\)

 

Bình luận (0)