Bài 4: Phân tích đa thức thành nhân tử
a) Ta có: \(x^4-4x^2-5\)
\(=x^4+x^2-5x^2-5\)
\(=x^2\left(x^2+1\right)-5\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2-5\right)\)
b) Ta có: \(\left(2x+1\right)^4-3\left(2x+1\right)^2+2\)
\(=\left(2x+1\right)^4-2\left(2x+1\right)^2-\left(2x+1\right)^2+2\)
\(=\left(2x+1\right)^2\left[\left(2x+1\right)^2-2\right]-\left[\left(2x+1\right)^2-2\right]\)
\(=\left(4x^2+4x+1-2\right)\left[\left(2x+1\right)^2-1\right]\)
\(=\left(4x^2+4x-1\right)\left(2x+1-1\right)\left(2x+1+1\right)\)
\(=\left(4x^2+4x-1\right)\cdot2x\cdot2\cdot\left(x+1\right)\)
\(=4x\cdot\left(x+1\right)\cdot\left(4x^2+4x-1\right)\)
d) Ta có: \(\left(x^2+2x-1\right)^2-3x\left(x^2+2x-1\right)+2x^2\)
\(=\left(x^2+2x-1\right)^2-x\left(x^2+2x-1\right)-2x\left(x^2+2x-1\right)+2x^2\)
\(=\left(x^2+2x-1\right)\left(x^2+2x-1-x\right)-2x\left(x^2+2x-1-x\right)\)
\(=\left(x^2+2x-1-2x\right)\left(x^2+x-1\right)\)
\(=\left(x^2-1\right)\left(x^2+x-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+x-1\right)\)