Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

NB

Bài 1 phân tích đa thức thành nhân tử z^3(x+y^2)+y^3(z-x^2)-x^3(y+z^2)-xyz(xyz-1)

NM
2 tháng 8 2021 lúc 17:34

\(z^3\left(x+y^2\right)+y^3\left(z-x^2\right)-x^3\left(y+z^2\right)-xyz\left(xyz-1\right)\)

\(=xz^3+y^2z^3+y^3z-x^2y^3-x^3-x^3z^2-x^2y^2z^2+xyz\)

\(=\left(y^2z^3+y^3z\right)+\left(xz^3+xyz\right)-\left(x^2y^3+x^2y^2z^2\right)-x^3\left(y+z^2\right)\)

\(=y^2z\left(y+z^2\right)+xz\left(y+z^2\right)-x^2y^2\left(y+z^2\right)-x^3\left(y+z^2\right)\)

\(=\left(y+z^2\right)\left(y^2z+xz-x^2y^2-x^3\right)\)

\(=\left(y+z^2\right)\left[z\left(y^2+x\right)-x^2\left(y^2+x\right)\right]\)

\(=\left(y+z^2\right)\left(z-x^2\right)\left(y^2+x\right)\)

Tick hộ nha bạn 😘

 

Bình luận (0)
NB
2 tháng 8 2021 lúc 17:29

z^3(x+y^2)+y^3(z-x^2)-x^3(y+z^2)-xyz(xyz-1)

 
Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
HC
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
B3
Xem chi tiết
AP
Xem chi tiết
CC
Xem chi tiết
ND
Xem chi tiết
TL
Xem chi tiết