Bài 3: Những hằng đẳng thức đáng nhớ

TA

Bài 1: Chứng minh rằng các biểu thức sau có giá trị dương với mọi giá trị của x ( Tìm giá trị nhỏ nhất).

D = x2 - 4x - 3x ;

E = x2 - 6x + 1 ;

F = x2 + x + 1 ;

G = x2 + x ;

H = 2x2 - 4x + 2018 ;

I = 2x2 + y2 + 2x + 2xy + 2019 ;

TP
15 tháng 7 2019 lúc 11:32

\(D=x^2-4x-3\)

\(D=x^2-4x+4-7\)

\(D=\left(x-2\right)^2-7\ge-7\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=2\)

\(E=x^2-6x+1\)

\(E=x^2-6x+9-8\)

\(E=\left(x-3\right)^2-8\ge-8\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=3\)

\(F=x^2+x+1\)

\(F=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(F=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)

Bình luận (0)
TP
15 tháng 7 2019 lúc 11:37

\(G=x^2+x\)

\(G=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\)

\(G=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)

\(H=2x^2-4x+2018\)

\(H=2\left(x^2-2x+1009\right)\)

\(H=2\left(x^2-2x+1+1008\right)\)

\(H=2\left[\left(x-1\right)^2+1008\right]\)

\(H=2\left(x-1\right)^2+2016\ge2016\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

\(I=2x^2+y^2+2x+2xy+2019\)

\(I=\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+2018\)

\(I=\left(x+y\right)^2+\left(x+1\right)^2+2018\ge2018\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
VD
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
VC
Xem chi tiết