Bài 3: Những hằng đẳng thức đáng nhớ

YS

a) Tìm cặp số x, y thỏa mãn:

x2. (x + 3) + y2. (y + 5) - (x + y). (x2 - xy + y2) = 0

b) Tìm cặp số nguyên (x, y) thỏa mãn:

(2x - y). (4x2 + 2xy + y2) + (2x + y). (4x2 - 2xy + y2) -16x. (x2 - y) = 32

AH
18 tháng 6 2019 lúc 11:49

Lời giải:

a)

\(x^2(x+3)+y^3(y+5)-(x+y)(x^2-xy+y^2)=0\)

\(\Leftrightarrow x^3+3x^2+y^3+5y^2-(x^3+y^3)=0\)

\(\Leftrightarrow 3x^2+5y^2=0\)

Ta thấy \(3x^2\geq 0; 5y^2\geq 0, \forall x,y\in\mathbb{R}\). Do đó để tổng $3x^2+5y^2=0$ thì $x^2=y^2=0$

$\Rightarrow x=y=0$

b)

\((2x-y)(4x^2+2xy+y^2)+(2x+y)(4x^2-2xy+y^2)-16x(x^2-y)=32\)

\(\Leftrightarrow [(2x)^3-y^3]+[(2x)^3+y^3]-16x^3+16xy=32\)

\(\Leftrightarrow 16x^3-16x^3+16xy=32\)

\(\Leftrightarrow 16xy=32\Rightarrow xy=2\)

Vì $x,y$ nguyên nên $(x,y)=(1,2); (2,1); (-1,-2); (-2,-1)$

Bình luận (0)
AH
31 tháng 7 2019 lúc 9:54

Lời giải:

a)

\(x^2(x+3)+y^3(y+5)-(x+y)(x^2-xy+y^2)=0\)

\(\Leftrightarrow x^3+3x^2+y^3+5y^2-(x^3+y^3)=0\)

\(\Leftrightarrow 3x^2+5y^2=0\)

Ta thấy \(3x^2\geq 0; 5y^2\geq 0, \forall x,y\in\mathbb{R}\). Do đó để tổng $3x^2+5y^2=0$ thì $x^2=y^2=0$

$\Rightarrow x=y=0$

b)

\((2x-y)(4x^2+2xy+y^2)+(2x+y)(4x^2-2xy+y^2)-16x(x^2-y)=32\)

\(\Leftrightarrow [(2x)^3-y^3]+[(2x)^3+y^3]-16x^3+16xy=32\)

\(\Leftrightarrow 16x^3-16x^3+16xy=32\)

\(\Leftrightarrow 16xy=32\Rightarrow xy=2\)

Vì $x,y$ nguyên nên $(x,y)=(1,2); (2,1); (-1,-2); (-2,-1)$

Bình luận (0)

Các câu hỏi tương tự
YN
Xem chi tiết
NT
Xem chi tiết
HH
Xem chi tiết
CY
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết