Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

BN

1) Phân tích đa thức thành nhân tử
a) x^3 - x^2y - xy^2 + y^3
b) x^3 + x^2 - 4x - 4
c) x^3 - x^2 - x + 1
d) ( 7x + 3 ) ^2 - ( 2x - 1 )^2
e) x^3 - 3x^2 - 3x + 1
f) x^2 - 2x - 3
g) x^2 - 2x - 8
h) x^2 - 10x + 21
i) x^2 - 4xy + 3y^2

NT
28 tháng 7 2017 lúc 9:17

a, \(x^3-x^2y-xy^2+y^3\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)

\(=\left(x^2-y^2\right)\left(x-y\right)\)

\(=\left(x-y\right)^2\left(x+y\right)\)

b, \(x^3+x^2-4x-4\)

\(=x^2\left(x+1\right)-4\left(x+1\right)\)

\(=\left(x^2-4\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\left(x+1\right)\)

c, \(x^3-x^2-x+1\)

\(=x^2\left(x-1\right)-\left(x-1\right)=\left(x^2-1\right)\left(x-1\right)\)

\(=\left(x-1\right)^2\left(x+1\right)\)

d, \(\left(7x+3\right)^2-\left(2x-1\right)^2\)

\(=\left(7x+3-2x+1\right)\left(7x+3+2x-1\right)\)

\(=\left(5x+4\right)\left(9x+2\right)\)

e, \(x^3-3x^2-3x+1\) sai đề

f, \(x^2-2x-3\)

\(=x^2-3x+x-3=x\left(x-3\right)+\left(x-3\right)\)

\(=\left(x+1\right)\left(x-3\right)\)

g, \(x^2-2x-8\)

\(=x^2-4x+2x-8=x\left(x-4\right)+2\left(x-8\right)\)

\(=\left(x+2\right)\left(x-8\right)\)

h, \(x^2-10x+21\)

\(=x^2-7x-3x+21\)

\(=x\left(x-7\right)-3\left(x-7\right)=\left(x-3\right)\left(x-7\right)\)

i, \(x^2-4xy+3y^2\)

\(=x^2-4xy+4y^2-y^2\)

\(=\left(x-2y\right)^2-y^2\)

\(=\left(x-2y-y\right)\left(x-2y+y\right)\)

\(=\left(x-3y\right)\left(x-y\right)\)

Bình luận (0)
TN
28 tháng 7 2017 lúc 9:26

a) \(x^3 - x^2y - xy^2 + y^3\)

\(=\left(x^3-x^2y\right)-\left(xy^2-y^3\right)\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)^2\left(x+y\right)\)

b) \(x^3 + x^2 - 4x - 4\)

\(=\left(x^3+x^2\right)-\left(4x+4\right)\)

\(=x^2\left(x+1\right)-4\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-4\right)\)

\(=\left(x+1\right)\left(x^2-2^2\right)\)

\(=\left(x+1\right)\left(x+2\right)\left(x-2\right)\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
H24
Xem chi tiết
NP
Xem chi tiết
NP
Xem chi tiết
PH
Xem chi tiết
HQ
Xem chi tiết
AL
Xem chi tiết
CC
Xem chi tiết
HH
Xem chi tiết