tìm đk của x để gt của pt đc xác định
\(\frac{3x+2}{2\left(x-1\right)-3\left(2x+1\right)}\)
Giúp nhé
Bài 1: Tính nhanh giá trị biểu thức
\(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)
Tại x = 100
Bài 2:Cho biểu thức
\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\)
a) Tìm điều kiện của x để giá trị của biểu thức đc xác định
b) CMR khi giá trị của biểu thức đc xác định thì nó không phụ thuộc và biến x
thiếu đề : \(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}.\)
Bài 2 :
a, Để \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4^2-4}{5}\)
\(\Rightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
b,\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4x^2-4}{5}\)
\(B=\left[\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x+1\right)\left(x-1\right)}-\frac{x+3}{2\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\left[\frac{x^2+2x+1}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{x^2+2x-3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\left[\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\frac{4}{2\left(x-1\right)\left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\frac{8}{5}\)
=> giá trị của B ko phụ thuộc vào biến x
bài 1
=\(^{\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x+1\right)^2}\)
=\(\left(2x+1+2x-1\right)^2\)
=\(\left(4x\right)^2\)
=\(16x^2\)
Tại x=100 thay vào biểu thức trên ta có:
16*100^2=1600000
\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)=\left[\frac{x+1}{2.\left(x-1\right)}+\frac{3}{x^2-1}-\frac{x+3}{2.\left(x+1\right)}\right]\)
\(\Rightarrow\hept{\begin{cases}x\ne1\\x\ne\pm1\\x\ne-1\end{cases}\Rightarrow x\pm1}\)
Vậy để B xác định => x=+-1
Câu 1 cho phân thức\(\frac{3x^2+6x+12}{x^3-8}\)
a) tìm điều kiện xá định của phân thức trên
b)tìm giá trị của phân thức tại x=\(\frac{4001}{2000}\)
c) tìm các giá trị nguyên của x để phân thức trên đạt giá trị nguyên.
câu 2giải pt
a)\(8\left(3x-2\right)-14x=2\left(4-7x\right)+15x\)
b)\(\frac{x-4}{3}-\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\)
c)\(\left(2x+7\right)\left(x-5\right)=0\)
d)\(x^2-4+\left(x-2\right)\left(3x-2\right)=0\)
các bạn giúp mình với nhé
câu 1
a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)
b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)
Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được
\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)
c) Để phân thức trên có giá trị nguyên thì :
\(3⋮x-2\)
=>\(x-2\inƯ\left(3\right)=\left(\pm1\pm3\right)\)
=>\(x\in\left\{1,3,-1,5\right\}\)
zậy ....
câu 2)
a) \(8\left(3x-2\right)-14x=2\left(4-7x\right)+15x\)
=>\(24x-16-14x=8-14x+15x\)
=>\(24x-14x+14x-15x=8+16\)
=>\(9x=24=>x=\frac{24}{9}=\frac{8}{3}\)
Cho biểu thức \(P=\left(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)
Tìm điều kiện của x để giá trị của biểu thức được xác địnhTìm giá trị của x để giá trị của P=0Tìm giá trị của x để |P|=1Cho phân thức \(M=\left[\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x+1}\right]:\frac{x^2+x}{x^3+x}\)
a) Tìm điều kiện để giá trị của biểu thức xác định
b) tìm giá trị của x để biểu thức bằng 0
c) Tìm x khi giá trị tuyệt đối của M=1
Cho phân thức: P = \(\frac{3x^2+3x}{\left(x+1\right)\left(3x-6\right)}\)
a) Tìm điều kiện của x để P xác định
b) Tính giá trị của P tại x=3
c) Tìm giá trị của x để P= 1
d) Tìm x để P>2
a) \(P=\frac{3x^2+3x}{\left(x+1\right)\left(3x-6\right)}\left(ĐKXĐ:x\ne-1;2\right)\)
b) \(P=\frac{3x\left(x+1\right)}{\left(x+1\right)\left(3x-6\right)}\)
\(P=\frac{3x}{3x-6}\)
Khi \(x=3\Leftrightarrow P=\frac{3\times3}{3\times3-6}\)
\(\Leftrightarrow P=3\)
c) Để P = 1 thì \(\frac{3x}{3x-6}=1\)
\(\Leftrightarrow3x=3x-6\)
\(\Leftrightarrow-6x=-6\)
\(\Leftrightarrow x=1\)
d) Ta có : \(P>2\Leftrightarrow\frac{3x}{3x-6}>2\)
\(\Leftrightarrow3x>2\left(3x-6\right)\)
\(\Leftrightarrow3x>6x-12\)
\(\Leftrightarrow-3x>-12\)
\(\Leftrightarrow x< 4\)
Cho biểu thức: Q= \([\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right).\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}]\)
a, Tìm điều kiện xác định của biểu thức
b, Rút gọn Q
c, Chứng minh rằng với các giá trị của x thỏa mãn điều kiện xác định thì -5 <= Q <= 0
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)
tìm tập xác định của hàm số :
f(x) = \(\frac{x^2+1}{\left(x-1\right)\sqrt{x^3+2x^2+3x}}\)
f(x) = \(\frac{\sqrt{x-2}}{\left|x^2-3x+2\right|+\left|x^2-1\right|}\)
a) \(D=(0;+\infty)\backslash\left\{1\right\}\)
b) \(D=[2;+\infty)\)
\(\left(\frac{x}{x^3-4x}^2+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\))
a, tìm điều kiện của x để A xác định
b, rút gọn biểu thức A
c, tìm giá trị của x để A>0
B1: tìm m để pt có nghiệm: \(4\sqrt{-x^2+3x+4}+3x+4=m\left(2\sqrt{x+1}+\sqrt{4-x}\right)\)
b2: \(y=2x^2-3\left(m+1\right)x+m^2+3m-2\) tìm m để gtnn của hàm số là gt lớn nhất
Đặt \(2\sqrt{x+1}+\sqrt{4-x}=t\Rightarrow t^2-4=3x+4+4\sqrt{-x^2+3x+4}\)
Ta có:
\(2\sqrt{x+1}+\sqrt{4-x}\le\sqrt{\left(4+1\right)\left(x+1+4-x\right)}=5\)
\(\sqrt{x+1}+\sqrt{x+1}+\sqrt{4-x}\ge\sqrt{x+1}+\sqrt{x+1+4-x}\ge\sqrt{5}\)
\(\Rightarrow\sqrt{5}\le t\le5\)
Phương trình trở thành:
\(t^2-4=mt\) \(\Leftrightarrow f\left(t\right)=t^2-mt-4=0\)
\(ac=-4< 0\Rightarrow pt\) luôn có 2 nghiệm trái dấu (nghĩa là đúng 1 nghiệm dương)
Vậy để pt có nghiệm thuộc \(\left[\sqrt{5};5\right]\Rightarrow x_1< \sqrt{5}\le x_2\le5\)
\(\Rightarrow f\left(\sqrt{5}\right).f\left(5\right)\le0\)
\(\Rightarrow\left(1-\sqrt{5}m\right)\left(21-5m\right)\le0\)
\(\Rightarrow\dfrac{\sqrt{5}}{5}\le m\le\dfrac{21}{5}\)
2.
Chắc đề đúng là "tìm m để giá trị nhỏ nhất của hàm số đạt giá trị lớn nhất"
Hàm bậc 2 có \(a=2>0\Rightarrow y_{min}=-\dfrac{\Delta}{4a}=-\dfrac{9\left(m+1\right)^2-8\left(m^2+3m-2\right)}{8}=-\dfrac{m^2-6m+25}{8}\)
\(\Rightarrow y_{min}=-\dfrac{1}{8}\left(m-3\right)^2-2\le-2\)
Dấu "=" xảy ra khi \(m-3=0\Rightarrow m=3\)