Cho B = 4 + 32 + 33 + ..... + 32004
C = 2 . 32004
So sánh B và C.
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho A=3 32 33 ... 32004.Chứng minh rằng A chia hết cho 40
Nếu đúng là zậy thì mk biết làm.
A = 3 + 32 + 33 + ... + 32004
A = ( 3 + 32 + 33 + 34 ) + ... + ( 32001 + 32002 + 32003 + 32004 )
A = 3( 1 + 3 + 32 + 33 ) + ... + 32001( 1 + 3 + 32 + 39 )
A = 3.40 + ... + 32001.40
A = ( 3 + 35 + ... 32001) . 40
=> A chia hết cho 40
A = 3 + 32 + 33 +34 + ... + 32004 phải ko?
Cho A=3+32+33+......+32004
a)Chứng minh A chia hết cho 130
b)A có phải là số chính phương ko? Vì sao?
bài 1 :
a) so sánh A và B biết : A =229 và B=539
b) B = 31+32+33+34+...+32010 chia hết cho 4 và 13
c) tính A = 1-3+32-33+34-...+398-399+3100
bài 2 tìm cái số nguyên n thỏa mãn
a) tìm các số nguyên n sao cho 7 ⋮ (n+1)
b) tìm các số nguyên n sao cho (2n + 5 ) ⋮ (n+1)
Bài 1:
a. $2^{29}< 5^{29}< 5^{39}$
$\Rightarrow A< B$
b.
$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$
$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$
$=(1+3)(3+3^3+3^5+...+3^{2009})$
$=4(3+3^3+3^5+...+3^{2009})\vdots 4$
Mặt khác:
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$
Bài 1:
c.
$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$
$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$
$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$
$\Rightarrow A=\frac{3^{101}+1}{4}$
Bài 2:
a. $7\vdots n+1$
$\Rightarrow n+1\in \left\{1; -1; 7; -7\right\}$
$\Rightarrow n\in \left\{0; -2; 6; -8\right\}$
b.
$2n+5\vdots n+1$
$\Rightarrow 2(n+1)+3\vdots n+1$
$\Rightarrow 3\vdots n+1$
$\Rightarrow n+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{0; -2; 2; -4\right\}$
Em hãy chứng minh :
a) A = 21 + 22 + 23 + 24 + .............. + 22010 chia hết cho 3 ; và 7 .
b) B = 31 + 32 + 33 + 34 + ............... + 22010 chia hết cho 4 và 13 .
c) C = 51 + 52 + 53 + 54 + ................... + 52010 chia hết cho 6 và 31 .
d) D = 71 + 72 + 73 + 74 + ...................... + 72010 chia hết cho 8 và 57 .
Giải:
a) A = 21 + 22 + 23 + 24 + .............. + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n mà 21 \(⋮\)cả 3 và 7
=> A \(⋮\)cả 3 và 7
Vây A \(⋮\)cả 3 và 7
b) B = 31 + 32 + 33 + 34 + ............... + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 32 \(⋮\)4
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 39 nằm trong dãy số đó mà 39 \(⋮\)13
=> B \(⋮\)cả 4 và 13
Vậy B \(⋮\)cả 4 và 13
c) C = 51 + 52 + 53 + 54 + ................... + 52010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 54 \(⋮\)6
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 62 nằm trong dãy số đó mà 62 \(⋮\)31
=> C \(⋮\)cả 6 và 31
Vậy C \(⋮\)cả 6 và 31
d) D = 71 + 72 + 73 + 74 + ...................... + 72010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 72 \(⋮\)8
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 114 nằm trong dãy số đó mà 114 \(⋮\)57
=> D \(⋮\)cả 8 và 57
Vậy D \(⋮\)cả 8 và 57
Học tốt!!!
Bài 3: Tính và so sánh
a / A = (3 + 5)2 và B = 32 + 52
b/ C = (3 + 5)3 và D = 33 + 53
Giải tam giác ABC biết
a) b = 32, c = 45 và A = 600 b) a = 2, b = 3, c = 4
So sánh:
a, 1 + 2 + 3 + 4 3 và 1 3 + 2 3 + 3 3 + 4 3
b, 19 4 và 16.18.20.22
a, 1 + 2 + 3 + 4 3 = 100; 1 3 + 2 3 + 3 3 + 4 3 = 100 nên 1 + 2 + 3 + 4 3 = 1 3 + 2 3 + 3 3 + 4 3
Vậy 1 + 2 + 3 + 4 3 = 1 3 + 2 3 + 3 3 + 4 3
b, 16.18.20.22 = (19 – 3)(19 – 1)(19 + 1)(19 + 3)
= (19 – 3)(19+3)(19 – 1)(19 + 1)
= ( 19 2 – 9)( 19 2 – 1)
= 19 4 - 9 . 19 2 - 19 2 + 9
= 19 4 - 10 . 19 2 + 9 < 19 4
Vậy 16.18.20.22 < 19 4
a) Không tính kết quả hãy so sánh : A=2019.2021 và B=20202
b) Cho biết A+4B ⋮ 13,(a,bϵN).Chứng minh rằng 10A+B ⋮ 13
c) Tìm số tự nhiên n,sao cho 5n+1⋮7
d) Cho C=3+32+33+34+...+3100 chứng tỏ C ⋮ 40
a: \(A=2019\cdot2021=2020^2-1\)
\(B=2020^2\)
Do đó: A<B
CHỨNG MINH RẰNG
A= 88+220 chia hết cho 17
B= 2+ 22+23+24+...+260 chia hết cho 3; cho 7; cho 15
C= 1+3+32+33+...+31991 chia hết cho 13; cho 41
D=3+32+33+34+...+32010 chia hết cho 4;cho 13
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
1)Tìm số dư của phép chia B cho 4
B=1+3+32+33+...+3100
2)Thu gọn C=5-52+53-54+...+52023-52024
Bài 1:
$B=1+3+3^2+3^3+...+3^{100}$
$=1+(3+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})$
$=1+3(1+3)+3^3(1+3)+...+3^{99}(1+3)$
$=1+(1+3)(3+3^3+...+3^{99})=1+4(3+3^3+....+3^{99})$
$\Rightarrow B$ chia 4 dư 1.
Bài 2:
$C=5-5^2+5^3-5^4+...+5^{2023}-5^{2024}$
$5C=5^2-5^3+5^4-5^5+...+5^{2024}-5^{2025}$
$\Rightarrow C+5C=5-5^{2025}$
$6C=5-5^{2025}$
$C=\frac{5-5^{2025}}{6}$