Những câu hỏi liên quan
NA
Xem chi tiết
H24
Xem chi tiết
AH
17 tháng 12 2021 lúc 23:16

Bài 1:

ĐKXĐ: $3-2x\geq 0\Leftrightarrow x\leq \frac{3}{2}$

Bài 2:

a. ĐKXĐ: $x\geq \frac{1}{3}$

PT $\Leftrightarrow 3x-1=2^2=4$

$\Leftrightarrow x=\frac{5}{3}$ (tm)

b. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{x-2}+2\sqrt{x-2}=6$

$\Leftrightarrow 3\sqrt{x-2}=6$

$\Leftrightarrow \sqrt{x-2}=2$

$\Leftrightarrow x-2=4$

$\Leftrightarrow x=6$ (tm)

Bình luận (0)
MV
Xem chi tiết
HP
3 tháng 1 2021 lúc 11:10

1.

\(\sqrt{50}-3\sqrt{8}+\sqrt{32}=5\sqrt{2}-6\sqrt{2}+4\sqrt{2}=3\sqrt{2}\)

2. 

a, ĐK: \(x\in R\)

\(pt\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\)

\(\Leftrightarrow\left|x-2\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

b, ĐK: \(x\ge3\)

\(pt\Leftrightarrow\sqrt{x-3}\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(l\right)\end{matrix}\right.\)

Bình luận (0)
NN
Xem chi tiết
TH
18 tháng 12 2020 lúc 18:27

ĐKXĐ: \(x\ge1\).

Phương trình đã cho tương đương:

\(\sqrt{x+3}+\sqrt{x-1}=\dfrac{8}{\sqrt{4x^4-12x^3+9x^2+16}-\left(2x^2-3x\right)}\)

\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}=\dfrac{\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)}{2}\)

\(\Leftrightarrow\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)-2\sqrt{x+3}-2\sqrt{x-1}=0\)

\(\Leftrightarrow\left(\sqrt{4x^4-12x^3+9x^2+16}-2\sqrt{x+3}\right)+\left(2x^2-3x-2\sqrt{x-1}\right)=0\)

\(\Leftrightarrow\dfrac{4x^4-12x^3+9x^2-4x+4}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{4x^4-12x^3+9x^2-4x+4}{2x^2-3x+2\sqrt{x-1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x^3-4x^2+x-2\right)\left(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}\right)=0\).

Do \(x\ge1\) nên ta có \(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}>0\).

Do đó \(\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\left(TMĐK\right)\\4x^3-4x^2+x-2=0\left(1\right)\end{matrix}\right.\).

Giải phương trình bậc 3 ở (1) ta được \(x=\dfrac{\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}{\sqrt[6]{279936}}+\dfrac{1}{\sqrt[6]{7776}\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}+\dfrac{1}{3}\approx1,157298106\left(TMĐK\right)\).

Vậy...

 

 

 

Bình luận (0)
TH
18 tháng 12 2020 lúc 18:49

Vì trong bài làm của mình có một số dòng khá dài nên bạn có thể vào trang cá nhân của mình để đọc tốt hơn!

Bình luận (0)
DH
Xem chi tiết
TK
11 tháng 1 2022 lúc 19:33
Not biếtmdnhdhd
Bình luận (0)
 Khách vãng lai đã xóa
TM
11 tháng 1 2022 lúc 20:33

Hummmm

Bình luận (0)
 Khách vãng lai đã xóa
HT
12 tháng 1 2022 lúc 19:48

Dạ em không biết ạ,tại vì em mới học lớp 4 ạ,em xin lỗi ạ

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
LH
4 tháng 6 2021 lúc 21:11

Đk: \(\left\{{}\begin{matrix}x^2-1\ge0\\3x^2+4x+1\ge0\\x+1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x+1\right)\ge0\\3\left(x+\dfrac{1}{3}\right)\left(x+1\right)\ge0\\x\ge-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\\left[{}\begin{matrix}x\ge-\dfrac{1}{3}\\x\le-1\end{matrix}\right.\\x\ge-1\end{matrix}\right.\)\(\Rightarrow x=-1\)

Thay x=-1 vào pt thấy thỏa mãn

Vậy pt có nghiệm duy nhất x=-1

Bình luận (2)
H24
7 tháng 6 2021 lúc 23:10

Bài làm sai rồi.

\(x=5\) vẫn thỏa mãn.

Bình luận (0)
QE
Xem chi tiết
NT
2 tháng 7 2021 lúc 23:09

a) ĐKXĐ: \(x\ge0\)

Ta có: \(3\sqrt{18x}-5\sqrt{8x}+4\sqrt{50x}=38\)

\(\Leftrightarrow9\sqrt{2x}-10\sqrt{2x}+20\sqrt{2x}=38\)

\(\Leftrightarrow19\sqrt{2x}=38\)

\(\Leftrightarrow\sqrt{2x}=2\)

\(\Leftrightarrow2x=4\)

hay x=2(thỏa ĐK)

b) ĐKXĐ: \(x\ge0\)

Ta có: \(3\sqrt{12x}-2\sqrt{27x}+4\sqrt{3x}=8\)

\(\Leftrightarrow6\sqrt{3x}-6\sqrt{3x}+4\sqrt{3x}=8\)

\(\Leftrightarrow\sqrt{3x}=2\)

\(\Leftrightarrow3x=4\)

hay \(x=\dfrac{4}{3}\)

c) ĐKXĐ: \(x\ge5\)

Ta có: \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\)

hay x=9

Bình luận (0)
H24
2 tháng 7 2021 lúc 23:13

a)

\(3.3\sqrt{2x}-5.2\sqrt{2x}+4.5.\sqrt{2x}=38\\ \Leftrightarrow19\sqrt{2x}=38\\ \Leftrightarrow\sqrt{2x}=2\\ \Leftrightarrow x=2\)

b)

\(3.2.\sqrt{3x}-2.3.\sqrt{3x}+4.\sqrt{3x}=8\\ \Leftrightarrow4\sqrt{3x}=8\\ \Leftrightarrow\sqrt{3x}=2\\\Leftrightarrow x=\dfrac{2^2}{3}=\dfrac{4}{3} \)

c)

\(\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\\ \Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\\ \Leftrightarrow x-5=4\\ \Leftrightarrow x=9\)

Bình luận (0)
H24
Xem chi tiết
NL
29 tháng 1 2024 lúc 20:14

\(\Leftrightarrow\sqrt[3]{3x+1}+\sqrt[3]{5-x}=\sqrt[3]{4x-3}+\sqrt[3]{9-2x}\)

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{3x+1}=a\\\sqrt[3]{5-x}=b\\\sqrt[3]{4x-3}=c\\\sqrt[3]{9-2x}=d\end{matrix}\right.\) 

Ta được: \(\left\{{}\begin{matrix}a+b=c+d\\a^3+b^3=c^3+d^3\end{matrix}\right.\)

TH1:

Nếu \(a+b=c+d=0\Leftrightarrow\sqrt[3]{3x+1}+\sqrt[3]{5-x}=\sqrt[3]{4x-3}+\sqrt[3]{9-2x}=0\)

\(\Rightarrow\left\{{}\begin{matrix}3x+1=-\left(5-x\right)\\4x-3=-\left(9-2x\right)\end{matrix}\right.\) \(\Rightarrow x=-3\)

TH2: nếu \(a+b=c+d\ne0\)

\(a+b=c+d\Leftrightarrow\left(a+b\right)^3=\left(c+d\right)^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=c^3+d^3+3cd\left(c+d\right)\)

\(\Leftrightarrow ab\left(a+b\right)=cd\left(c+d\right)\) (do \(a^3+b^3=c^3+d^3\))

\(\Leftrightarrow ab=cd\) (do \(a+b=c+d\ne0\))

\(\Leftrightarrow\sqrt[3]{\left(3x+1\right)\left(5-x\right)}=\sqrt[3]{\left(4x-3\right)\left(9-2x\right)}\)

\(\Leftrightarrow\left(3x+1\right)\left(5-x\right)=\left(4x-3\right)\left(9-2x\right)\)

\(\Leftrightarrow5x^2-28x+32=0\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{8}{5}\end{matrix}\right.\)

Vậy \(x=\left\{-3;4;\dfrac{8}{5}\right\}\)

Bình luận (0)
NL
29 tháng 1 2024 lúc 19:49

Cái cuối này căn bậc 2 hay căn bậc 3 em? Căn bậc 2 thì hơi nghi ngờ về khả năng giải được của pt này. 

Bình luận (1)
BA
Xem chi tiết
NT
9 tháng 7 2021 lúc 0:36

f) Ta có: \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)

\(\Leftrightarrow4\left|x+1\right|-3\left|x+1\right|=4\)

\(\Leftrightarrow\left|x+1\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

g) Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)

\(\Leftrightarrow5\sqrt{x+1}-\sqrt{x+1}=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

Bình luận (0)