Những câu hỏi liên quan
H24
Xem chi tiết
H24
28 tháng 2 2021 lúc 11:32

`k^2-k+10`

`=(k-1/2)^2+9,75>9`

`k^2-k+10` là số chính phương nên đặt

`k^2-k+10=a^2(a>3,a in N)`

`<=>4k^2-4k+40=4a^2`

`<=>(2k-1)^2+39=4a^2`

`<=>(2k-1-2a)(2k-1+2a)=-39`

`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`

`2k+2a>6`

`=>2k+2a-1> 5`

`=>2k+2a-1=39,2k-2a-1=-1`

`=>2k+2a=40,2k-2a=0`

`=>a=k,4k=40`

`=>k=10`

Vậy `k=10` thì `k^2-k+10` là SCP

Bình luận (1)
H24
28 tháng 2 2021 lúc 11:34

`+)2k+2a-1=13,2k-2a-1=-3`

`=>2k+2a=14,2k-2a=-2`

`=>k+a=7,k-a=-1`

`=>k=3`

Vậy `k=3` hoặc `k=10` thì ..........

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
PL
Xem chi tiết
PL
30 tháng 1 2022 lúc 18:16

hello

Bình luận (0)
DH
Xem chi tiết
YN
11 tháng 9 2021 lúc 20:59

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
KG
Xem chi tiết
LP
2 tháng 8 2023 lúc 18:50

 Ta có \(P=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

  Dễ thấy nếu \(5|n\)\(n\equiv1\left[5\right]\) hay \(n\equiv4\left[5\right]\) thì \(P⋮5\). Còn nếu \(n\equiv2\left[5\right]\) hay \(n\equiv3\left[5\right]\) thì \(n^2+1⋮5\Rightarrow P⋮5\). Vậy \(P=n^5-n⋮5,\) với mọi số tự nhiên \(n\). Suy ra \(D=P+2\equiv2\left[5\right]\)

 Mà một số chính phương khi chia cho 5 chỉ có thể dư 0, 1 hoặc 4 (chứng minh điều này rất dễ, bạn chỉ cần xét lần lượt \(n\equiv0,1,2,3,4\left[5\right]\) rồi đặt \(n=5k+i\left(0\le i\le4\right)\) rồi khai triển \(\left(5k+i\right)^2=25k+10ki+i^2\equiv i^2\left[5\right]\) là xong).

 Suy ra D không thể là số chính phương, nghĩa là không tồn tại n để D là số chính phương.

Bình luận (0)
TM
Xem chi tiết
NQ
Xem chi tiết