LT

Tìm số tự nhiên n để 

A) n^2-n+2 là số chính phương

B) n^5-n+2 là số  chính phương

DH
14 tháng 2 2018 lúc 21:22

Đang bận nên hướng dẫn

a )Đặt  \(n^2-n+2=a^2\) (a thuôc Z)

\(\Leftrightarrow4n^2-4n+8=4a^2\)

\(\Leftrightarrow\left(4n^2-4n+1\right)-4a^2+7=0\)

\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)

\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2n-1\right)=-7\)

Đến đây  phân tích ước của  7 ra ; tự lm đc

b) Ta có : \(n^5-n=n\left(n^4-1\right)=n\left(n^2+1\right)\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Ta thấy tổng trên chia hết cho 2 và 5 nên \(n^5-n\) chia hết cho 10

=> \(n^5-n+2\) có chữ số tận cùng là 2 ko phải số CP 

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
KG
Xem chi tiết
TM
Xem chi tiết
NQ
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết