Chứng minh a4+b3+c2+1>=2a(ab2-a+c+1). Mong thầy cô giúp em ạ
Chứng minh:
a) ( a 2 - ab + b 2 ) ( a + b ) = a 3 + b 3 ;
b) ( a 3 + a 2 b + ab 2 + b 3 ) ( a - b ) = a 4 - b 4 ;
Thực hiện phép nhân đa thức với đa thức ở vế trái.
=> VT = VP (đpcm)
Cho các số thực dương \(a;b;c\) thỏa mãn :\(ab+bc+ca=abc\). Chứng minh rằng :
\(\dfrac{1}{a+2b+3c}+\dfrac{1}{b+2c+3a}+\dfrac{1}{c+2a+3b}\le\dfrac{1}{6}\).
P/s: Em xin phép nhờ quý thầy cô và các bạn bè hỗ trợ và giúp đỡ với ạ. Em cám ơn rất nhiều!
\(ab+bc+ca=abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Đặt vế trái của BĐT cần chứng minh là P
Ta có:
\(\dfrac{1}{a+2b+3c}=\dfrac{1}{a+b+b+c+c+c}\le\dfrac{1}{6^2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{c}\right)\)
\(\Rightarrow\dfrac{1}{a+2b+3c}\le\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\right)\)
Tương tự:
\(\dfrac{1}{b+2c+3a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{3}{a}\right)\) ; \(\dfrac{1}{c+2a+3b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{2}{a}+\dfrac{3}{b}\right)\)
Cộng vế:
\(P\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{6}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Cho các số thực dương \(a;b;c\) thỏa mãn : \(a+b+c=3\). Chứng minh rằng :
\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b}\le\dfrac{1}{2}\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều ạ!
\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{ab}{2b}\right)\)
\(=\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)
Tương tự:
\(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}+\dfrac{b}{2}\right)\)
\(\dfrac{ac}{c+3a+2b}\le\dfrac{1}{9}\left(\dfrac{ac}{b+c}+\dfrac{ac}{a+b}+\dfrac{c}{2}\right)\)
Cộng vế:
\(P\le\dfrac{1}{9}\left(\dfrac{bc+ac}{a+b}+\dfrac{bc+ab}{a+c}+\dfrac{ab+ac}{b+c}+\dfrac{a+b+c}{2}\right)\)
\(P\le\dfrac{1}{9}.\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
1 cân sắt và 1 cân bông bên nào nặng hơn ạ . Mong thầy cô giúp em với ạ , em cảm ơn
TL
bằng nhau
nha bn
HT
sắt nặng hơn
HT
bằng nhau nhau nha vì đều là 1kg chứ nhiều bạn tưởng bông nhẹ hơn sắt nên tưởng sắt nặng hơn k mik nha
Cho A1=B1 Chứng minh a)A1=B3, A4=B2 b)A2=B2, A3=B3, A4=B4 c)A2+B1=180°,A4+B3=180°
giúp mik vs
a, \(\widehat{B}_1=\widehat{B_3}\) đối đỉnh
\(\widehat{A}_1=\widehat{B}_1\) theo bài đầu
Do đó \(\widehat{A_1}=\widehat{B_3}\)
Mặt khác,ta có \(\widehat{A_1}+\widehat{A_4}=180^0\) hai góc kề bù
=> \(\widehat{A_4}=180^0-\widehat{A_1}\) \((1)\)
Và \(\widehat{B_2}+\widehat{B_3}=180^0\) hai góc kề bù
=> \(\widehat{B_2}=180^0-\widehat{B_3}\) \((2)\)
\(\widehat{A_1}=\widehat{B_3}\) \((3)\)
Từ 1,2,3 ta có : \(\widehat{A_4}=\widehat{B_2}\)
b, \(\widehat{A_2}=\widehat{A_4}\) đối đỉnh
\(\widehat{A_4}=\widehat{B_2}\) theo câu a
Do đó : \(\widehat{A_2}=\widehat{B_2};\widehat{A_1}=\widehat{A_3}\) đối đỉnh
\(\widehat{A_1}=\widehat{B_3}\) câu a
Do đó \(\widehat{A_3}=\widehat{B_3}\). Mặt khác \(\widehat{B_2}=\widehat{B_4}\) hai góc đối đỉnh
\(\widehat{A_4}=\widehat{B_2}\) câu a . Do đó \(\widehat{A_4}=\widehat{B_4}\)
c, \(\widehat{B_1}+\widehat{B_2}=180^0\) hai góc kề bù
\(\widehat{A_1}=\widehat{B_1}\) theo đầu bài
Do đó \(\widehat{A_1}+\widehat{B_2}=180^0\)
Mặt khác \(\widehat{B_2}+\widehat{B_3}=180^0\) kề bù
\(\widehat{A_4}=\widehat{B_2}\) theo câu a . Do đó \(\widehat{A_4}+\widehat{B_3}=180^0\)
Cho a,b,c là các số thực dương thỏa mãn a^2+b^2+c^2=3
CMR \(\frac{1}{1+a^2b^2}+\frac{1}{1+b^2c^2}+\frac{1}{1+c^2a^2}\ge\frac{9}{2\left(a+b+c\right)}\)
mong các bạn và thầy cô giúp đỡ ạ!
Cho tam giác ABC vuông tại A, góc B= 30 độ. Trên cạnh BC lấy điểm Mày sao cho AM=BM. Chứng minh: tam giác AMC đều
Giai hộ em bài này với ạ. Em đang cần gấp, mong các anh, chị, thầy, cô giúp ạ
Gấp thì giúp đây ^_^ !!
+) Ta có : AM = BM ; M thuộc cạnh huyền BC
=> AM là đường trung tuyến ứng với cạnh huyền BC
=> AM = BM = MC
+) \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^o\)
\(\Leftrightarrow90^o+30^o+\widehat{C}=180^o\)
\(\Leftrightarrow\widehat{C}=60^o\)
Xét tam giác AMC có :
\(\hept{\begin{cases}\widehat{C}=60^o\\AM=MC\end{cases}}\)
=> AMC là tam giác đều ( đpcm )
Cho các số thực dương \(a;b;c\) thỏa mãn \(a.b.c=1\). Chứng minh rằng :
\(\dfrac{1}{a^2+2.b^2+6}+\dfrac{1}{b^2+2c^2+6}+\dfrac{1}{c^2+2a^2+6}\le\dfrac{1}{3}\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ 1 câu trong đề cương toán lớp 10 với ạ. Em cám ơn nhiều ạ!
Cho ba số thực dương a; b và c thỏa mãn : \(a.b.c=1\)
Chứng minh rằng : \(\dfrac{a}{(ab+a+1)^2}+\dfrac{b}{(bc+b+1)^2}+\dfrac{c}{(ac+c+1)^2}\ge\dfrac{1}{a+b+c}\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn giúp đỡ, em cám ơn nhiều ạ!
Bài toán cơ bản:
\(abc=1\Rightarrow\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\)
Bunhiacopxki:
\(\left(a+b+c\right)\left(\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\right)\ge\left(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\right)^2=1\)
\(\Rightarrow\dfrac{a}{\left(ab+a+1\right)^2}+\dfrac{b}{\left(bc+b+1\right)^2}+\dfrac{c}{\left(ac+c+1\right)^2}\ge\dfrac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Cách 2:
Do \(abc=1\), đặt \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)
Ta có \(\dfrac{a}{\left(ab+a+1\right)^2}=\dfrac{\dfrac{x}{y}}{\left(\dfrac{x}{z}+\dfrac{x}{y}+1\right)^2}=\dfrac{\dfrac{x}{y}.y^2z^2}{\left(xy+yz+zx\right)^2}=\dfrac{xyz^2}{\left(xy+yz+zx\right)^2}\)...
Từ đó, BĐT cần chứng minh trở thành:
\(\dfrac{xyz^2}{\left(xy+yz+zx\right)^2}+\dfrac{x^2yz}{\left(xy+yz+zx\right)^2}+\dfrac{xy^2z}{\left(xy+yz+zx\right)^2}\ge\dfrac{1}{\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}}\)
\(\Leftrightarrow xyz\left(x+y+z\right)\left(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\right)\ge\left(xy+yz+zx\right)^2\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2z+y^2x+z^2y\right)\ge\left(xy+yz+zx\right)^2\)
Thật vậy, áp dụng BĐT Bunhiacopxki:
\(\left(z+x+y\right)\left(x^2z+y^2x+z^2y\right)\ge\left(\sqrt{zx^2z}+\sqrt{xy^2x}+\sqrt{yz^2y}\right)^2=\left(xy+yz+zx\right)^2\) (đpcm)