cho bieu thuc D=\(\frac{2N+7}{N+3}\)[N thuoc z, n khac 3] tim cac gia tri cua n de D la so nguyen
cho B=n/n-3(n thuoc Z , n khac 3)
tim tat ca cac gia tri nguyen cua n de B la so nguyen
CHo C= 3n+5.n+7(n thuoc Z, N khac -7)
tim tat ca cac gia tri nguyen cua n de C la so nguyen
a) ta có: \(B=\frac{n}{n-3}=\frac{n-3+3}{n-3}=\frac{n-3}{n-3}+\frac{3}{n-3}\)
Để B là số nguyên
\(\Rightarrow\frac{3}{n-3}\in z\)
\(\Rightarrow3⋮n-3\Rightarrow n-3\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)
nếu n -3 = 3 => n= 6 (TM)
n- 3 = - 3 => n = 0 (TM)
n -3 = 1 => n = 4 (TM)
n -3 = -1 => n = 2 (TM)
KL: \(n\in\left(6;0;4;2\right)\)
b) đề như z pải ko bn!
ta có: \(C=\frac{3n+5}{n+7}=\frac{3n+21-16}{n+7}=\frac{3.\left(n+7\right)-16}{n+7}=\frac{3.\left(n+7\right)}{n+7}-\frac{16}{n+7}=3-\frac{16}{n+7}\)
Để C là số nguyên
\(\Rightarrow\frac{16}{n+7}\in z\)
\(\Rightarrow16⋮n+7\Rightarrow n+7\inƯ_{\left(16\right)}=\left(16;-16;8;-8;4;-4;2;-2;1;-1\right)\)
rùi bn thay giá trị của n +7 vào để tìm n nhé ! ( thay như phần a đó)
bai 1
cho bieu thuc A = 5/n+1 voi N THUOC Z
a, de A la phan so thi n co dieu kien gi ?
b , tim tat ca cac gia tri nguyen cua n de gia tri A la 1 so nguyen ?
bai 2
cho bieu thuc M = 6/n-3 voi n thuoc Z .Co bao nhieu gia tri cua n de :
a, M ko phai la phan so
b , M la phan so va cp gia tri nguyen ?
bai 3 viet tap hop cacs so nguyen sao cho :
-12/4 < x <6/3
Bài 1:
a: Để A là phân số thì n+1<>0
hay n<>-1
b: Để A là số nguyên thì \(n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
cho bieu thuc 2n+1/n+5(n thuoc Z)
a, tim n de Pco gia tri la 1 so nguyen
b,tim gia tri lon nhat,gia tri nho nhat cua P
để P thuộc Z =>2n+1 chia hết cho n+5
=>2n+10-9 chia hết cho n+5
=>2(n+5)-9 chia hết cho n+5
=>9 chia hết cho n+5
\(\Rightarrow n+5\in\left\{-9;-3;-1;1;3;9\right\}\)
\(\Rightarrow n\in\left\{-14;-8;-6;-4;-2;4\right\}\)
cho bieu thuc a=2n+2/2n-4 (N thuoc Z)
a) voi gia tri nao cua n de a la phan so
b) tim cac so co gia tri cua n de là so nhuyen
2n+2 phan 2n-4
Hoàn tất đoạn văn sau, sau đó trả lời câu hỏi bên dưới
Quang s camping(1)_______at_____the weekend, he often go camping(2)_____on_____the mountains. He usually goes(3)____with______ his friend. Quang and his fried always wear strong boots(4)_____and______warm clothes. (5)______They_____always take food, water and a camping stove. Sometimes, they (6)______camp_______overnight.
* Questions:
1. What does Quang s?
He s camping.
2. Where does he often go camping?
He often goes camping on the mountains.
3. When does he go?
On weekend.
4. Who does he usually go with?
He usually goes with his friend.
5. What do they always wear?
Quang and his fried always wear strong boots and warm clothes.
6. What do they always take?
They always take food, water and a camping stove.
7. Do they camp overnight?
Yes, they do.
nay, làm gì vậy ta
ông bị khùng chac
Cho cac bieu thuc
A=n+6 phan n-5 va B=3n-9 phan n-6
a/ Tim gia tri nguyen cua n de A, B la phan so ?
b/ Tim gia tri nguyen cua n de A, B co gia tri nguyen?
c/ Tim gia tri nguyen cua n de A, B co gia tri nguyen lon nhat?
cho bieu thuc :A=2n+1/n-3+3n-5/n-3-4n-5/n-3.a, tim n de a nhan gia tri nguyen .b,tim n de a la phan so toi gian
cho bieu thuc :A=2n+1/n-3+3n-5/n-3-4n-5/n-3.a, tim n de a nhan gia tri nguyen .b,tim n de a la phan so toi gian
tim so tu nhien n de de gia tri bieu thuc A la so nguyen to a=n3-2n2+2n-1
Lời giải:
Ta thấy:
\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)
\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)
Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.
Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$
$\Rightarrow n=2$
Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)
Vậy $n=2$
Lời giải:
Ta thấy:
\(A=n^3-2n^2+2n-1=(n^3-1)-(2n^2-2n)\)
\(=(n-1)(n^2+n+1)-2n(n-1)=(n-1)(n^2-n+1)\)
Để $A$ là số nguyên tố thì trước tiên buộc 1 trong 2 thừa số $n-1,n^2-n+1$ phải có 1 thừa số bằng $1$, số còn lại là số nguyên tố.
Mà $n-1< n^2-n+1$ với mọi $n\in\mathbb{N}$ nên $n-1=1$
$\Rightarrow n=2$
Thử lại vào $A$ ta thấy $A=3$ nguyên tố (thỏa mãn)
Vậy $n=2$
Linh Hồ: Bạn lưu ý lần sau gõ đề bài đầy đủ dấu và công thức toán!
so cac gia tri nguyen cua n thoa man de bieu thuc A=\(\frac{3n+4}{n-1}\) la so nguyen
Ta có :
\(\frac{3n+4}{n-1}=\frac{3n-3}{n-1}+\frac{7}{n-1}=3+\frac{7}{n-1}\) nguyên
<=> n - 1 \(\in\) Ư(7) = {-7; -1; 1; 7}
<=> n \(\in\) {-6; 0; 2; 8}