cho hàm số y=f(x)=x+4+5x^2-6.
b)Hãy so sánh f(a) và f(-a)
Cho hàm số y=f(x)= -5x+1
So sánh f(a) và f(b) biết a>b
MK đang cần gấp
Cho đồ thị hàm số \(y = f\left( x \right) = {x^2}\) như Hình 6.
a) So sánh \(f\left( { - 2} \right),f\left( { - 1} \right)\). Nêu nhận xét về sự biến thiên của giá trị hàm số khi giá trị biến x tăng dần từ -2 đến -1.
b) So sánh \(f\left( 1 \right),f\left( 2 \right)\). Nêu nhận xét về sự biến thiên của giá trị hàm số khị giá trị biến x tăng dần từ 1 đến 2.
a)
\(f\left( { - 2} \right) = {\left( { - 2} \right)^2} = 4;\)\(f\left( { - 1} \right) = {\left( { - 1} \right)^2} = 1\)
\( \Rightarrow f\left( { - 2} \right) > f\left( { - 1} \right)\)
Lấy \({x_1},{x_2} \in \left( { - 2; - 1} \right)\) sao cho \({x_1} < {x_2}\).
\( \Rightarrow {x_1} - {x_2} < 0\)
\({x_1},{x_2} < 0 \Rightarrow {x_1} + {x_2} < 0\)
Ta có:
\(\begin{array}{l}f\left( {{x_1}} \right) = x_1^2;f\left( {{x_2}} \right) = x_2^2\\f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = x_1^2 - x_2^2\\ = \left( {{x_1} - {x_2}} \right).\left( {{x_1} + {x_2}} \right) > 0\\ \Rightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\end{array}\)
=> Hàm số nghịch biến trên (-2;-1)
Vậy hàm số giảm khi x tăng từ -2 đến -1
b)
\(\begin{array}{l}f\left( 1 \right) = 1;f\left( 2 \right) = {2^2} = 4\\ \Rightarrow f\left( 1 \right) < f\left( 2 \right)\end{array}\)
Lấy \({x_1},{x_2} \in \left( {1;2} \right)\) sao cho \({x_1} < {x_2}\).
\( \Rightarrow {x_1} - {x_2} < 0\)
\({x_1},{x_2} > 0 \Rightarrow {x_1} + {x_2} > 0\)
Ta có:
\(\begin{array}{l}f\left( {{x_1}} \right) = x_1^2;f\left( {{x_2}} \right) = x_2^2\\f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = x_1^2 - x_2^2\\ = \left( {{x_1} - {x_2}} \right).\left( {{x_1} + {x_2}} \right) < 0\\ \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\end{array}\)
=> Hàm số đồng biến trên (1;2)
Vậy hàm số tăng khi x tăng từ 1 đến 2.
Cho hàm số y=f(x)=-3x
a)Vẽ đồ thị hàm số y=-3x
b)So sánh f(-2) và f(5)
b. ta có f(-2)= -3.(-2) =6
f(5)= - 3.5= - 15
a) Đồ thị hàm số y = -3x là đường thẳng đi qua gốc tọa độ O(0; 0) và điểm A(1; -3).
b) ta có: f(-2) = -3(-2) = 6
f(5) = -3.5= -15
vậy f(-2) < f(5)
cho hàm số: y=f(x)=x
Tính f(1);f(-1);f(2);f(-2);và so sánh f(a) với f(-a)
Ta có: 1<2
nên \(1-\sqrt{2}< 2-\sqrt{2}\)
\(\Leftrightarrow f\left(1-\sqrt{2}\right)>f\left(2-\sqrt{2}\right)\)(Vì hàm số y=f(x)=-x+4 nghịch biến trên R nên nếu \(x_1< x_2\) thì \(f\left(x_1\right)>f\left(x_2\right)\))
Ta có \(1-\sqrt{2}< 2-\sqrt{2}\) \(\Rightarrow-\left(1-\sqrt{2}\right)>-\left(2-\sqrt{2}\right)\) \(\Rightarrow-\left(1-\sqrt{2}\right)+4>-\left(2-\sqrt{2}\right)+4\) Mà \(f\left(1-\sqrt{2}\right)=-\left(1-\sqrt{2}\right)+4,f\left(2-\sqrt{2}\right)=-\left(2-\sqrt{2}\right)+4\)
\(\Rightarrow f\left(1-\sqrt{2}\right)>f\left(2-\sqrt{2}\right)\)
. a) Cho hàm số y = f(x) = 2x2 + 5x – 3. Tính f(1); f(0); f(1,5).
b) Cho hàm số: y = f(x) = ax - 3
Tìm a biết f(3) = 9; f(5) = 11; f(-1) = 6.
a)\(f\left(1\right)=2.1^2+5.1-3=2+5-3=4\)
\(f\left(0\right)=0+0-3=-3\)
\(f\left(1,5\right)=2.\left(1,5\right)^2-5.1,5-3=4,5-7,5-3=-6\)
b)\(f\left(3\right)=3a-3=9=>>3a=12=>a=4\)
\(f\left(5\right)=5a-3=11=>5a=14=>a=\dfrac{14}{5}\)
\(f\left(-1\right)=-a-3=6=>-a=9=>a=-9\)
Cho hàm số y = f(x) = (m+1)x – 2 có đồ thị là (d)
a. Tìm m biết rằng đồ thị (d) của hàm số đi qua A(-2:0)
b. Nêu tính chất và vẽ đồ thị hàm số với m tìm được ở câu a .
c. Không tính hãy so sánh f(2√3) và f(3√2)
d. Viết phương trình đường thẳng đi qua B(-1;1)và vuông góc với (d) nói trên
Cho hàm số y=f(x)=x^2-5x+6
a)Tính f(-1/3);f(1/2);f(0);f(1)
b)Tìm x khi y=0
\(f\left(x\right)=x^2-5x+6\)
a) +) \(f\left(-\frac{1}{3}\right)=\left(-\frac{1}{3}\right)^2-5.\left(-\frac{1}{3}\right)+6=\frac{70}{9}\)
+) \(f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2-5.\frac{1}{2}+6=\frac{15}{4}\)
+) \(f\left(0\right)=0^2-5.0+6=6\)
+) \(f\left(1\right)=1^2-5.1+6=2\)
b) \(x^2-5x+6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
ok
Câu 1: Cho hàm số y = 2x\(^2\)
a) Hãy lập bảng tính các giá trị f(-5), f(-3), f(0), f(3), f(5)
b) Tìm x biết f(x) = 8, f(x) = 6 - 4\(\sqrt{2}\)
Câu 2: Cho hàm số y = f(x) = \(\dfrac{1}{3}x^2\)
Tìm các giá trị của x, biết rằng \(y=\dfrac{1}{27}\). Cũng câu hỏi tương tự với y = 5
Câu 1:
a)
\(y=f\left(x\right)=2x^2\) | -5 | -3 | 0 | 3 | 5 |
f(x) | 50 | 18 | 0 | 18 | 50 |
b) Ta có: f(x)=8
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)
Ta có: \(f\left(x\right)=6-4\sqrt{2}\)
\(\Leftrightarrow2x^2=6-4\sqrt{2}\)
\(\Leftrightarrow x^2=3-2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)
hay \(x=\sqrt{2}-1\)
Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)