Những câu hỏi liên quan
LH
Xem chi tiết
DP
Xem chi tiết
DT
19 tháng 10 2020 lúc 13:24

Ta có a^5-a luôn chia hết cho 6

suy ra a^5+...+d^5 -2016 chia hết cho 6

dpcm

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
DH
24 tháng 7 2021 lúc 21:43

Với \(x\)nguyên bất kì, ta có: \(x^5-x=x\left(x^4-1\right)=x\left(x^2-1\right)\left(x^2+1\right)=x\left(x^2-1\right)\left(x^2-4\right)+5x\left(x^2-1\right)\)

\(=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)+5x\left(x-1\right)\left(x+1\right)\)

Có \(x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)là tích của \(5\)số tự nhiên liên tiếp nên chia hết cho \(2,3,5\)mà \(\left(2,3,5\right)=1\)nên nó chia hết cho \(2.3.5=30\).

\(x\left(x-1\right)\left(x+1\right)\)là tích của \(3\)số tự nhiên liên tiếp nên chia hết cho \(2,3\)mà \(\left(2,3\right)=1\)nên chia hết cho \(2.3=6\)do đó \(5x\left(x-1\right)\left(x+1\right)\)chia hết cho \(30\).

Vậy \(x^5-x\)chia hết cho \(30\).

Ta có: 

\(a^5+b^5+c^5+d^5-\left(a+b+c+d\right)\)

\(=\left(a^5-a\right)+\left(b^5-b\right)+\left(c^5-c\right)+\left(d^5-d\right)\)chia hết cho \(30\)

nên \(\left(a^5+b^5+c^5+d^5\right)\equiv\left(a+b+c+d\right)\left(mod30\right)\)

mà \(a^5+b^5+c^5+d^5=30\left(c^5+d^5\right)⋮30\)

suy ra \(a+b+c+d\)chia hết cho \(30\).

Bình luận (0)
 Khách vãng lai đã xóa
TU
Xem chi tiết
TU
13 tháng 2 2022 lúc 20:35

cho minh hỏi bài này với ah.

Bình luận (0)
HA
Xem chi tiết
H24
Xem chi tiết
QV
Xem chi tiết
H24
23 tháng 11 2021 lúc 20:24

Gọi 4 số lần lượt là 5k + 1, 5k + 2, 5k + 3 và 5k + 4.

Ta có: a+b+c+d = 20k + 10 = 5.(4k+2) chia hết cho 5.

Bình luận (0)
HD
Xem chi tiết
NT
1 tháng 4 2023 lúc 23:03

=>5(a^3+b^3+c^3+d^3)=18(c^3+d^3)

=>5(a^3+b^3+c^3+d^3) chia hết cho 6

=>a^3+b^3+c^3+d^3 chia hêt cho 6

a^3-a=a(a+1)(a-1) chia hết cho 3!=6

b^3-b=b(b+1)(b-1) chia hết cho 3!=6

c^3-c=c(c+1)(c-1) chia hết cho 3!=6

d^3-d=d(d+1)(d-1) chia hết cho 3!=6

=>a^3+b^3+c^3+d^3-a-b-c-d chia hết cho 6

=>a+b+c+d chia hết cho 6

Bình luận (0)
LL
Xem chi tiết
TX
21 tháng 11 2018 lúc 21:32

Gọi 4 số lần lượt là 5k + 1, 5k + 2, 5k + 3 và 5k + 4.

Ta có: a+b+c+d = 20k + 10 = 5.(4k+2) chia hết cho 5.

Bình luận (0)