Tìm 2 số nguyên dương x,y biết 2y.(2x-y-1)=256
a)Tìm số nguyên dương x và y với x>y biết 2x+1 chia hết cho y và 2y+1 chia hết cho x
b)Tìm số nguyên tố x, y biết: 15x-7y=y^2
(cần gấp trong hôm nay)
Tìm số nguyên dương x,y với x>y, biết 2x+1 chia hết cho y và 2y+1 chia hết cho x
a) Tìm tất cả các số nguyên tố p và các số nguyên dương x,y biết : p -1=2x(x+2) và p2-1 =2y(y+2)
b) Tìm tất cả các số nguyên dương n sao cho tồn tại x,y,z là các số nguyên dương thỏa mãn x3+y3 +z3 =n.x2y2z2
tìm số nguyên dương x và y biết:
2^x-2^y=256
Tìm số nguyên dương x,y biết:2x-256=2y
Cách này hơi lâu 1 chút nhưng vẫn ra nhé @@:
2x-2y=256 => 2y.(2x-y-1)=28
Vì x,y nguyên dương mà 2x-256=2y nên x>y suy ra x-y>0
Khi có 2x-y chẵn nên 2x-y-1 lẻ
Mà 2y.(2x-y-1)=28 nên 2x=28 và 2x-y-1 =1
( chố này có thể hiểu là vế phải bằng 2^8 nên khi phân tích vế trái ra thừa số nguyên tố chứa toàn lũy thừa của 2 nên không thể có thừa số lẻ nên suy ra 1 trong 2 thừa số bằng 1)
Đù sao chữ ở bài nhỏ thế @@
Tìm số số nguyên dương x và y với x>y biết 2x+1 chia hết cho y vá 2y+1 chia hết cho x
tìm x,y nguyên dương với x>y,biết 2x+1:hết y và 2y+1:hết x
tìm các số nguyên dương x,y biết:
2^x - 2^y = 256
tìm các cặp số nguyên dương (x,y) thỏa mãn : 2x^2-xy-x-2y+1=0
\(\Leftrightarrow2x^2-x+1=xy+2y\)
\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)
\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)
Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)
Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)
\(\Rightarrow y=14\)
Vậy \(\left(x;y\right)=\left(9;14\right)\)