Tìm x,y,z biết x/9=y/5=z/10 và x - y +z =70
Tìm x,y,z biết:\(\frac{x}{9}=\frac{y}{5}=\frac{z}{10}\)và x - y + z =70
Ai giúp tui với
\(\frac{x}{9}=\frac{y}{5}=\frac{z}{10}\)\(=\frac{x-y+z}{9-5+10}\)\(=5\)
---> x = 9.5 = 45
---> y = 5.5 = 25
---> z = 10.5 = 50
học tốt nhoa bạn
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{5}=\frac{z}{10}=\frac{x-y+z}{9-5+10}=\frac{70}{14}=5\)
\(\frac{x}{9}=5\Rightarrow x=45\)
\(\frac{y}{5}=5\Rightarrow y=25\)
\(\frac{z}{10}=5\Rightarrow z=50\)
Vậy x = 45; y = 25; z = 50
theo t/c của dẩy tỉ số = nhau ta có:
x/9=y/5=z/10=x-y+z/9-5+10=70/14=5
suy ra x/9=5 suy ra x=45
y/5=5 suy ra y=25
z/10=5 suy ra z=50
tìm x,y biết
a/ x/y = 10/9 ; y/z = 3/4 và x - y + z =78
b/ (6/11).x = (9/2).y = (18/5).z và (- x) + y+ z = -120
tìm 3 số x,y,z biết x/2=y/3;y/3=z/5 và x+y+z=âm 70
Aps dụng tính chất của dãy tỉ số = nhau ta có
(x+y+z)/(2+3+5)=-70/10=-7
x/2=7 => x=-14
y/3=7 => y=-21
z/5=7 => z=-35
TL:
z= -35
-HT-
TL:
oái mình quên
x= -14
y= - 21
z= -35
-HT-
tìm x,y,z biết:
câu 3:x/y=5/9 và x-y=-40
câu b: x/2=y/3 và 5.x-2.y=28
câu c: x/5=y/7=z/10 và x+y-z=20
câu d: x/3=y/4=z/5 và 3.x-2.y+2.z=121
câu e: x/4=y/2 và y/3=z/5 và x+y-z=20
3) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.9=90\end{matrix}\right.\)
4) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x}{10}=\dfrac{2y}{6}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.2=14\\y=7.3=21\end{matrix}\right.\)
5) \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-z}{5+7-10}=\dfrac{20}{2}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.7=70\\z=10.10=100\end{matrix}\right.\)
6) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2y}{8}=\dfrac{2z}{10}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\Rightarrow\left\{{}\begin{matrix}x=11.3=33\\y=11.4=44\\z=11.5=55\end{matrix}\right.\)
7) \(\Rightarrow\dfrac{x}{12}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{12+6-10}=\dfrac{20}{8}=\dfrac{5}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}.12=30\\y=\dfrac{5}{2}.6=15\\z=\dfrac{5}{2}.10=25\end{matrix}\right.\)
Câu 3:
\(\dfrac{x}{y}=\dfrac{5}{9}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=5\\ \dfrac{y}{9}=10\Rightarrow y=90\)
Câu b:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\dfrac{x}{2}=7\Rightarrow x=14\\ \dfrac{y}{3}=7\Rightarrow y=21\)
Câu c:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-1}{5+7-10}=\dfrac{20}{2}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=50\\ \dfrac{y}{7}=10\Rightarrow y=70\\ \dfrac{z}{10}=10\Rightarrow z=100\)
Câu d:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\dfrac{x}{3}=11\Rightarrow x=3\\ \dfrac{y}{4}=11\Rightarrow y=44\\ \dfrac{z}{5}=11\Rightarrow z=55\)
Câu e:
\(\dfrac{x}{4}=\dfrac{y}{2}\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{y}{6}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10} \)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{8+6-10}=\dfrac{20}{4}=5\)
\(\dfrac{x}{8}=5\Rightarrow x=40\\ \dfrac{y}{6}=5\Rightarrow y=30\\ \dfrac{z}{10}=5\Rightarrow z=50\)
Lời giải:
Đặt \(\frac{10}{x-5}=\frac{6}{y-9}=\frac{14}{z-21}=\frac{1}{k}\) với $k\neq 0$
$\Rightarrow x=10k+5; y=6k+9; z=14k+21$
Khi đó:
$xyz=6720$
$\Leftrightarrow (10k+5)(6k+9)(14k+21)=6720$
$\Leftrightarrow (2k+1)(2k+3)(2k+3)=64$
Đây là PT bậc 3 và nghiệm rất xấu. PP giải cũng phù hợp với lớp 9 chứ không phù hợp với lớp 7.
Do đó ta tìm giá trị gần đúng của $k$. $k\approx 0,89$
$\Rightarrow x\approx 13,95; y\approx 14,37; z\approx 33,53$
tìm z,y,z biết x/y=10/9; y/z=3/4 và x-y+z=78
Ta có:\(\frac{x}{y}=\frac{10}{9}\Rightarrow\frac{x}{y}=\frac{30}{27}\Rightarrow\frac{x}{30}=\frac{y}{27}\left(1\right)\)
\(\frac{y}{z}=\frac{3}{4}\Rightarrow\frac{y}{z}=\frac{27}{36}\Rightarrow\frac{y}{27}=\frac{z}{36}\left(2\right)\)
Từ (1) và (2) suy ra:\(\frac{x}{30}=\frac{y}{27}=\frac{z}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{30}=\frac{y}{27}=\frac{z}{36}=\frac{x-y+z}{30-27+36}=\frac{78}{39}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{30}=2\\\frac{y}{27}=2\\\frac{z}{36}=2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)
Tìm x,y,z biết : :x/y = 10/9 ; y/z = 3/4 và x - y + z = 78
Ta có : \(\frac{x}{y}=\frac{10}{9}\Rightarrow\frac{x}{10}=\frac{y}{9}\)(1)
\(\frac{y}{z}=\frac{3}{4}\Rightarrow\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{y}{9}=\frac{z}{12}\) (2)
Từ (1) và (2) => \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)
Ta có : \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
Nên : \(\frac{x}{10}=6\Rightarrow x=60\)
\(\frac{y}{9}=6\Rightarrow y=54\)
\(\frac{z}{12}=6\Rightarrow z=72\)
Vậy x = 60 ; y = 54 ; z = 72
Tìm các số hữu tỉ x,y và z biết rằng :
x(x+y+z)=-5;y(x+y+z)=9;z(x+y+z)=5
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
Tìm x;y;z biết: 10/x-5=6/y-9=14/z-21 và xyz=6720
Bạn tham khảo lời giải tại đây:
Câu hỏi của Nguyễn Thị Thúy - Toán lớp 7 | Học trực tuyến