Với ạ,b,c là các số nguyên thỏa mãn a+b+c=2112.cmr a^3+b^3+c^3 chia hết cho 6
Với a,b,c là các số nguyên thỏa mãn \(a+b+c=2112\)
Chứng minh rằng \(a^3+b^3+c^3\) chia hết cho 6
Xét hiệu: (a3 + b3 + c3) - (a + b + c)
= (a3 - a) + (b3 - b) + (c3 - c)
= a.(a2 - 1) + b.(b2 - 1) + c.(c2 - 1)
= a.(a - 1).(a + 1) + b.(b - 1).(b + 1) + c.(c - 1).(c + 1)
Dễ thấy mỗi tích trên chia hết cho 6 vì là tích 3 số nguyên liên tiếp
=> (a3 + b3 + c3) - (a + b + c) chia hết cho 6
Mà a + b + c chia hết cho 6 => a3 + b3 + c3 chia hết cho 6 (đpcm)
cho a,b,c là các số nguyên thỏa mãn: \(a+b=c^3-2018c\). CMR: A= \(a^3+b^3+c^3\) chia hết cho 6
cho 4 số nguyên a,b,c,d thỏa mãn a^3+b^3+c^3+7d^3 chia hết cho 6 .CMR A+B+C+D cũng chia hết cho 6
Với a,b, c là các số nguyên thỏa mãn a+b+c = 2112
CMR \(a^3+b^3+c^3\) chia hết cho 6 ( 3 là số mũ ạ, thông cảm, mình k biết viết)
Giúp mình nhé
Cho 3 số nguyên a, b, c thỏa mãn: a-b+c= 2016. CMR: a^3-b^3+c^3 chia hết cho 3
Cho a, b, c là các số nguyên thỏa mãn a+7b+2024c = c3 . Chứng minh rằng a^3+b^3+c^3 chia hết cho 6.
Ta có \(P=a^3+b^3+c^3\)
\(P=\left(a^3-a\right)+\left(b^3-7b\right)+\left(2c^3-2024c\right)+a+7b+2024c-c^3\)
\(P=a\left(a^2-1\right)+b\left(b^2-7\right)+2c\left(c^2-1012\right)\) ( do \(a+7b+2024c=c^3\))
Dễ thấy \(a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\) là tích của 3 số nguyên liên tiếp nên chia hết cho 6.
Xét \(f\left(b\right)=b\left(b^2-7\right)\). Dễ thấy \(f\left(b\right)\) chẵn với mọi số nguyên \(b\). Nếu \(b⋮3\Rightarrow f\left(b\right)⋮3\). Nếu \(b⋮̸3\) thì \(b^2\equiv1\left[3\right]\) \(\Rightarrow b^2-7⋮3\) \(\Rightarrow f\left(b\right)⋮3\). Vậy \(f\left(b\right)⋮3\) với mọi số nguyên \(b\). Vậy thì \(f\left(b\right)⋮6\)
Xét \(g\left(c\right)=2c\left(c^2-1012\right)\). Cũng dễ thấy \(g\left(c\right)\) chẵn. Nếu \(c⋮3\) thì \(g\left(c\right)⋮3\). Nếu \(c⋮̸3\) thì \(c^2\equiv1\left[3\right]\) \(\Rightarrow c^2-1012⋮3\) \(\Rightarrow g\left(c\right)⋮3\). Thế thì \(g\left(c\right)⋮6\) với mọi số nguyên \(c\)
Từ đó \(P=a\left(a^2-1\right)+f\left(b\right)+g\left(c\right)⋮6\), đpcm.
cho a,b,c,d là các số nguyên thỏa mãn 5(a^3 + b^3 )=13(c^3 + d^3). Chứng minh a+b+c+d chia hết cho 6
Giups mik vs mik cảm ơn ạ
=>5(a^3+b^3+c^3+d^3)=18(c^3+d^3)
=>5(a^3+b^3+c^3+d^3) chia hết cho 6
=>a^3+b^3+c^3+d^3 chia hêt cho 6
a^3-a=a(a+1)(a-1) chia hết cho 3!=6
b^3-b=b(b+1)(b-1) chia hết cho 3!=6
c^3-c=c(c+1)(c-1) chia hết cho 3!=6
d^3-d=d(d+1)(d-1) chia hết cho 3!=6
=>a^3+b^3+c^3+d^3-a-b-c-d chia hết cho 6
=>a+b+c+d chia hết cho 6
Cho 3 số nguyên dương a,b,c thỏa mãn a^3 + b^3 +c^3 chia hết cho 14. CMR abc cũng chia hết cho 14
Giúp mình với:
Cho a, b, c là các số nguyên thỏa mãn a+7b+2024c=c3 . Chứng minh rằng \(a^{3}\)+\(b^3\)+\(c^3\) chia hết cho 6.