A, x*2+x*3=50
B, x*9-x*5=24
Bài 5. Tìm x biết :
a) x + 37 = 50
b) 2.x – 3 = 11
c) (2 + x ) : 5 = 6
d) 2 + x : 5 = 6
Bài 5:
a)x+37=50
⇔x=13
b)2x-3=11
⇔2x=14
⇔x=7
c)(2+x):5=6
⇔2+x=30
⇔x=28
d)2+x:5=6
⇔x:5=4
⇔x=20
a)x+37=50
x =50-37
x =13
b)2.x-3=11
2.x =11+3
2.x =14
x =14:2
x =7
c)(2+x):5=6
2+x =6.5
2+x =30
x=30-2
x=28
d)2+x:5=6
x:5=6-2
x:5=4
x=4.5
x=20
Câu trả lời nhớ ghi đầy đủ như này nha bạn
a/ Cho M=\(\dfrac{\sqrt{x}-1}{2}\). Tìm x ∈ Z để M ∈ Z biết x<50
b/ Cho N=\(\dfrac{9}{\sqrt{x}-5}\). Tìm x ∈ Z để N ∈ Z
\(a,x< 50\Leftrightarrow\sqrt{x}-1< 5\sqrt{2}-1\\ M=\dfrac{\sqrt{x}-1}{2}\in Z\\ \Leftrightarrow\sqrt{x}-1\in B\left(2\right)=\left\{0;2;4;6\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{1;3;5;7\right\}\\ \Leftrightarrow x\in\left\{1;9;25;49\right\}\\ b,\Leftrightarrow\sqrt{x}-5\inƯ\left(9\right)=\left\{-3;-1;1;3;9\right\}\left(\sqrt{x}-5>-5\right)\\ \Leftrightarrow\sqrt{x}\in\left\{2;4;6;8;14\right\}\\ \Leftrightarrow x\in\left\{4;16;36;64;196\right\}\)
Tìm x ∈ N sao cho:
a)x ⋮ 15;x ⋮ 20 và 50
b)30⋮ x;45⋮x và x>10
c)9:(x+2)
d)(x+17):(x+3)
b: 30 chia hết cho x
45 chia hết cho x
Do đó: \(x\inƯC\left(30;45\right)=Ư\left(15\right)\)
mà x>10
nen x=15
c: \(\Leftrightarrow x+2\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(x\in\left\{-1;-3;1;-5;7;-11\right\}\)
d: =>x+3+14 chia hết cho x+3
=>\(x+3\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)
hay \(x\in\left\{-2;-4;-1;-5;4;-10;11;-17\right\}\)
1 Tìm số tự nhiên x biết :
a .4^5 : 4^x =16
b (x -1 ) ^2 =25
c . (2x+1) ^3 =27
2 .So sánh
a . 3^100 và 9^50
b. 2^98 và 9^49
c . 5^30 và 6.5^29
d. 3^30 và 8^10
3 .Tính giá trị của biểu thức sau :
a . {145-[130-(246-236)]:2}.5
b.4 +96 :[(2^4.2+4):3^2]
c. 17^0 +[5^13:511+(136-130)^3]
d.100:{250:[450-(4.5^3-2^2.25]}
4.tìm x , biết :
a . 210-5 (x-10)=200
b[3.(70-x)+5]:2=46
c.230+[2^4+(x-5)]=315.2018^0
d . 707 : [(2^x-5)+74] = 4^2-3^2
5. cho tổng A=77+105+161+x với x thuộc N .tìm điều kiện của x để :
a. A chia hết cho 7
b.A không chia hết cho 7
giúp mình với ạ . mình cần khá gấp. bạn nào làm bài này mình tick cho nha
\(1,\\ a,\Leftrightarrow4^{5-x}=4^2\Leftrightarrow5-x=2\Leftrightarrow x=3\\ b,\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\\ c,\Leftrightarrow2x+1=3\Leftrightarrow x=2\\ 2,\\ a,3^{100}=\left(3^2\right)^{50}=9^{50}\\ b,2^{98}=\left(2^2\right)^{49}=4^{49}< 9^{49}\\ c,5^{30}=5^{29}\cdot5< 6\cdot5^{29}\\ d,3^{30}=\left(3^3\right)^{10}=27^{10}>8^{10}\\ 4,\\ a,\Leftrightarrow5\left(x-10\right)=10\\ \Leftrightarrow x-10=2\Leftrightarrow x=12\\ b,\Leftrightarrow3\left(70-x\right)+5=92\\ \Leftrightarrow3\left(70-x\right)=87\\ \Leftrightarrow70-x=29\\ \Leftrightarrow x=41\\ c,\Leftrightarrow16+x-5=315-230=85\\ \Leftrightarrow x=74\\ d,\Leftrightarrow2^x-5+74=707:\left(16-9\right)=707:7=101\\ \Leftrightarrow2^x=32=2^5\\ \Leftrightarrow x=5\)
a)(x-4).5=50
b)(-470-x).(-3)=-120
c)5.x3+(-170)=-210
giúp m
\(a,\left(x-4\right).5=50\\ \Rightarrow x-4=10\\ \Rightarrow x=14\\ b,\left(-470-x\right)\left(-3\right)=-120\\ \Rightarrow-470-x=40\\ \Rightarrow x=-510\\ c,5x^3+\left(-170\right)=-210\\ \Rightarrow5x^3=-40\\ \Rightarrow x^3=-8\\ \Rightarrow x=-2\)
a,(x−4).5=50⇒x−4=10⇒x=14
b,(−470−x)(−3)=−120⇒−470−x=40⇒x=−510
c,5x3+(−170)=−210⇒5x3=−40⇒x3=−8⇒x=−2
x - 4 = 50. 5
x - 4 = 250
x = 250 + 4
x = 254
Vậy x = 254
b) -470 - x = -120. (-3)
-470 - x = 360
x = -470 - 360
x = -830
Vậy x = -830
c) 5. x3 = -210 - (-170)
5. x3 = -40
x3 = -40: 5
x3 = -8
x = -2
Vậy x = -2
tìm x a) (8x+2) (1-3x)+(6x -1)(4x-10)=-50
b) (1 -4x)(x-1)+4(3x+2)(x+3)=38
c)5(2x+3)(x+2)- 2.(5x-4)(x-1)=75
hộ mk vs ạ
a: ta có: \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(\Leftrightarrow8x-24x^2+2-6x+24x^2-60x-4x+40=-50\)
\(\Leftrightarrow-62x=-92\)
hay \(x=\dfrac{46}{31}\)
b: ta có: \(\left(1-4x\right)\left(x-1\right)+4\left(3x+2\right)\left(x+3\right)=38\)
\(\Leftrightarrow x-1-4x^2+4x+4\left(3x^2+9x+2x+6\right)=38\)
\(\Leftrightarrow-4x^2+5x-1+12x^2+44x+24-38=0\)
\(\Leftrightarrow8x^2+49x-15=0\)
\(\text{Δ}=49^2-4\cdot8\cdot\left(-15\right)=2881\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-49-\sqrt{2881}}{16}\\x_2=\dfrac{-49+\sqrt{2881}}{16}\end{matrix}\right.\)
a)Tìm số tự nhiên x sao cho x⋮ 4; x ⋮5; x ⋮10 và x là số có hai chữ số x <50
b)Tìm số tự nhiên x nhỏ nhất biết x chia cho 5 dư 3, chia 7 dư 5
a: x chia hết cho 4;5;10
nên \(x\in BC\left(4;5;10\right)\)
mà 10<=x<50
nên x=40
b: x=33
A,(X-2)^11 = (x-2)^3 ; b, (x-5)^24 = (x-5)^9 ; c, (x-5)^25 = (x-5)^4
a: =>(x-2)^3*[(x-2)^8-1]=0
=>(x-2)(x-3)(x-1)=0
=>\(x\in\left\{2;3;1\right\}\)
b: (x-5)^24=(x-5)^9
=>\(\left(x-5\right)^9\cdot\left[\left(x-5\right)^{15}-1\right]=0\)
=>x-5=0 hoặc x-5=1
=>x=6 hoặc x=5
c: =>(x-5)^4*[(x-5)^21-1]=0
=>x-5=0 hoặc x-5=1
=>x=5 hoặc x=6
a) \(\left(x-2\right)^{11}=\left(x-2\right)^3\)
\(\Rightarrow\left(x-2\right)^{11}-\left(x-2\right)^3=0\)
\(\Rightarrow\left(x-2\right)^3\left[\left(x-2\right)^8-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-2\right)^3=0\\\left(x-2\right)^8-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\\left(x-2\right)^8=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x-2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
b) \(\left(x-5\right)^{24}=\left(x-5\right)^9\)
\(\Rightarrow\left(x-5\right)^{24}-\left(x-5\right)^9=0\)
\(\Rightarrow\left(x-5\right)^9\left[\left(x-5\right)^{15}-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^9=0\\\left(x-5\right)^{15}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^{15}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x-5=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)
c) \(\left(x-5\right)^{25}=\left(x-5\right)^4\)
\(\Rightarrow\left(x-5\right)^{25}-\left(x-5\right)^4\)
\(\Rightarrow\left(x-5\right)^4\left[\left(x-5\right)^{21}-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^4=0\\\left(x-5\right)^{21}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^{21}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x-5=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)
Tìm x,y,z biết:
a)\(\dfrac{x-1}{2}\)=\(\dfrac{y-2}{3}\)=\(\dfrac{z-3}{4}\) và 2x+3y-z=50
b)\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\)và xyz=810
a, Ta có :
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{4+9-4}=\dfrac{50-5}{9}=5\)
\(\Rightarrow x=11;y=17;z=23\)
b, Đặt \(\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\Rightarrow xyz=810\)
\(\Rightarrow2k.3k.5k=810\Leftrightarrow30k^3=810\Leftrightarrow k^3=27\Leftrightarrow k=3\)
\(\Rightarrow x=6;y=9;z=15\)
a) Ta có: \(\dfrac{x-1}{2}=\dfrac{2x-2}{4};\dfrac{y-2}{3}=\dfrac{3y-6}{9};\dfrac{z-3}{4}\)
Áp dụng t/c dtsbn:
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-z+3}{4+9-4}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=5\\\dfrac{y-2}{3}=5\\\dfrac{z-3}{4}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=12\end{matrix}\right.\)
b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
xyz = 810
=> 2k.3k.5k = 810
=> k = 3
\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=9\\z=15\end{matrix}\right.\)
a) Ta có: \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)
nên \(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)
mà 2x+3y-z=50
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{4+9-4}=\dfrac{50-5}{9}=5\)
Do đó:
\(\left\{{}\begin{matrix}x-1=10\\y-2=15\\z-3=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)
b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
Ta có: xyz=810
\(\Leftrightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\)
\(\Leftrightarrow k=3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot3=6\\y=3k=3\cdot3=6\\z=5k=5\cdot3=15\end{matrix}\right.\)
Đúng ghi Đ sai ghi S:
a,5 x 7/18 + 2/9 = 5 x 11/18=55/18
b,3/4 x (2/9+5/6) = 3/4 x 2/9 +3/4 x 5/6=1/6 + 5/8=19/24