CMR nếu x+y+=a và 1/x+1y+1/z1/a thì tồn tại một trong ba số x,y,z bằng a
CMR: nếu x+y+z=a và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{a}\) thì tồn tại một trong 3 số x, y, z bằng a
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{a}\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\dfrac{x+y}{xy}+\dfrac{1}{z}-\dfrac{1}{x+y+z}=0\)
\(\Leftrightarrow\dfrac{x+y}{xy}+\dfrac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\dfrac{\left(x+y\right)\left(xy+yz+zx+z^2\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}z=a\\x=a\\y=a\end{matrix}\right.\)
Chứng minh rằng nếu x+y+z= a và 1/x+1/y+1/z=1/a thì tồn tại trong ba số x,y,z bằng a
từ giả thiết => \(\frac{1}{x+y+z}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
sau đó quy đòng và tách nhân tử là (x+y)(y+z)(z+x)=0
=> 2 số sẽ đối nhau, nên sẽ tồn tại 1 số = a
Chứng minh rằng nếu x+y+z=a và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{a}\) thì tồn tại một trong ba số x,y,z bằng a.
bài 1: CMR nếu x+y+z=a và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{a}\)
thì tồn tại 1 trong 3 số x, y, z bằng a
cho x*y*z=1 và x+y+z=1/x+1/y+1/z. CMR trong 3 số x,y,z tồn tại một số =1
cho biểu thức M= \(\frac{x^2+y^2-z^2}{2xy}\)+\(\frac{y^2+z^2-x^2}{2yz}\)\(+\frac{z^2+x^2-y^2}{2xz}\)
a, cmr nếu M=1 thì trong ba số x,y,z có một số bằng tổng hai số kia và trong biểu thức M có hai phân thức có giá trị bằng 1, phân thức còn lại có giá trị bằng -1
b, nếu x,y,z là các độ dài đoạn thẳng và M>1 thì x,y,z là độ dài ba cạnh của một ta giác
CMR nếu x+y+z=a và 1/x+1/y+1/z=1/a thì ít nhất 1 số bằng a
Từ x + y + z = a và 1/x + 1/y + 1/z = 1/a
=> 1/x + 1/y + 1/z = 1/ ( x + y + z )
<=>( xy + yz + xz )/xyz = 1/ x + y + z
<=>( xy + yz + xz ) ( x + y + z ) = xyz
Rồi dựa vào đó bạn nhân phá ngoặc và biến phương trình trên về dạng :
( x + y ) ( y + z ) ( z + x ) = 0
=> x = -y => x = a
hoặc y = -z =>x = a
hoặc z = -x => y = a
Nhớ Li - ke nhé !!!
Chúc học tốt !!!
cho x ,y ,z khác 0 thỏa mãn điều kiện : x+y+z=2015 và 1/x+1/y+1/z=2015
chứng ming rằng tồn tại ít nhất một trong ba số x,y,z bằng 2015
Từ x+y+z=2015 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z\Rightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Rightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{xz+yz+z^2}\right)=0\Rightarrow\frac{\left(x+y\right)\left(xy+yz+zx+z^2\right)}{xyz\left(x+y+z\right)}=0\)
\(\Rightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)(Do x,y,z khác 0)
Mà x+y+z=2015 và (x+y)(y+z)(x+z)=0
=> x+y=0 => z =2015
hoặc y+z=0 => x=2015
hoặc x+z=0 => y=2015
Vậy nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z=2015\)thì ít nhất 1 trong 3 số x,y,z bằng 2015(ĐPCM)
lik.e nhé!
Cho x,y,z khác 0 TM x+y+z=2018 và 1/x + 1/y + 1/z =1/2018 . CMR tồn tại ít nhất 1 trong ba số x,y,z bằng2018
Ta co : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
=> \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x+y+z}-\dfrac{1}{z}\)
=> \(\dfrac{x+y}{xy}=\dfrac{-x-y}{z\left(x+y+z\right)}\)
=> \(\left(x+y\right)\left(x+y+z\right)z+\left(x+y\right)xy=0\)
=> (x+y)(xz+zy+z2+xy)=0
=> (x+y)(x+z)(y+z)=0
=> x+y=0 hoac x+z=0 hoac y+z=0 , do x+y+z=2018
=> z=2018 hoac y=2018 hoac z=2018
=> DPCM