Những câu hỏi liên quan
BB
Xem chi tiết
NL
27 tháng 12 2020 lúc 8:17

Cấu hỏi đâu mà trả lờihum

Bình luận (0)
NL
27 tháng 12 2020 lúc 10:56

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{a}\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\dfrac{x+y}{xy}+\dfrac{1}{z}-\dfrac{1}{x+y+z}=0\)

\(\Leftrightarrow\dfrac{x+y}{xy}+\dfrac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x+y\right)\left(xy+yz+zx+z^2\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}z=a\\x=a\\y=a\end{matrix}\right.\)

Bình luận (0)
KT
Xem chi tiết
VC
23 tháng 12 2017 lúc 23:49

từ giả thiết => \(\frac{1}{x+y+z}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

sau đó quy đòng và tách nhân tử là (x+y)(y+z)(z+x)=0

=> 2 số sẽ đối nhau, nên sẽ tồn tại 1 số = a

Bình luận (0)
TM
Xem chi tiết
NM
Xem chi tiết
NV
Xem chi tiết
PL
Xem chi tiết
NN
Xem chi tiết
NL
3 tháng 9 2015 lúc 12:12

Từ x + y + z = a và 1/x + 1/y + 1/z = 1/a

=> 1/x + 1/y + 1/z = 1/ ( x + y + z )

<=>( xy + yz + xz )/xyz = 1/ x + y + z

<=>( xy + yz + xz ) ( x + y + z ) = xyz

Rồi dựa vào đó bạn nhân phá ngoặc và biến phương trình trên về dạng :

( x + y ) ( y + z ) ( z + x ) = 0

=> x = -y => x = a

hoặc y = -z =>x = a

hoặc z = -x => y = a

Nhớ Li - ke nhé !!!

Chúc học tốt !!!

Bình luận (0)
BD
Xem chi tiết
TT
22 tháng 5 2015 lúc 21:33

Từ x+y+z=2015 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z\Rightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Rightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{xz+yz+z^2}\right)=0\Rightarrow\frac{\left(x+y\right)\left(xy+yz+zx+z^2\right)}{xyz\left(x+y+z\right)}=0\)

\(\Rightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)(Do x,y,z khác 0)

Mà x+y+z=2015 và (x+y)(y+z)(x+z)=0

=> x+y=0 => z =2015

hoặc y+z=0 => x=2015

hoặc x+z=0 => y=2015

                         Vậy nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z=2015\)thì ít nhất 1 trong 3 số x,y,z bằng 2015(ĐPCM)

               lik.e nhé!

Bình luận (0)
NN
30 tháng 10 2017 lúc 19:21

đề có sai k vậy bạn?

Bình luận (0)
LA
Xem chi tiết
TA
23 tháng 1 2018 lúc 22:17

Ta co : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

=> \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x+y+z}-\dfrac{1}{z}\)

=> \(\dfrac{x+y}{xy}=\dfrac{-x-y}{z\left(x+y+z\right)}\)

=> \(\left(x+y\right)\left(x+y+z\right)z+\left(x+y\right)xy=0\)

=> (x+y)(xz+zy+z2+xy)=0

=> (x+y)(x+z)(y+z)=0

=> x+y=0 hoac x+z=0 hoac y+z=0 , do x+y+z=2018

=> z=2018 hoac y=2018 hoac z=2018

=> DPCM

Bình luận (0)