\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{a}\)
\(\Leftrightarrow\)\(\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)
\(\Leftrightarrow\)\(x^2y+xyz+x^2z+xy^2+xyz+y^2z+x^2z+xyz+xz^2-xyz=0\)
\(\Leftrightarrow\)\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\) (chỗ này mk lm tắt nha)
\(\Leftrightarrow\)\(x+y=0\) \(\Leftrightarrow\) \(z=a\)
\(y+z=0\) \(x=a\)
\(x+z=0\) \(y=a\)
Vậy tồn tại 1 trong 3 số x,y,z = a (đpcm)